import torch default_num_train_timesteps = 1000 @torch.no_grad() def make_sigmas(beta_start=0.00085, beta_end=0.012, num_train_timesteps=default_num_train_timesteps, device=None): betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32, device=device) ** 2 alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0) # TODO - would be nice to use a direct expression for this sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 return sigmas @torch.no_grad() def rk_ode_solver_diffusion_loop(eps_theta, timesteps, sigmas, x_T, rk_steps_weights): x_t = x_T for i in range(len(timesteps) - 1, -1, -1): t = timesteps[i].unsqueeze(0) sigma = sigmas[t] if i == 0: eps_hat = eps_theta(x_t=x_t, t=t, sigma=sigma) x_0_hat = x_t - sigma * eps_hat else: dt = sigmas[timesteps[i - 1]] - sigma dx_by_dt = torch.zeros_like(x_t) dx_by_dt_cur = torch.zeros_like(x_t) for rk_step, rk_weight in rk_steps_weights: dt_ = dt * rk_step t_ = t + dt_ x_t_ = x_t + dx_by_dt_cur * dt_ eps_hat = eps_theta(x_t=x_t_, t=t_, sigma=sigma) # TODO - note which specific ode this is the solution to and # how input scaling does/doesn't effect the solution # dx_by_dt_cur = (x_t_ - sigma * eps_hat) / sigma dx_by_dt_cur = eps_hat dx_by_dt += dx_by_dt_cur * rk_weight x_t_minus_1 = x_t + dx_by_dt * dt x_t = x_t_minus_1 return x_0_hat euler_ode_solver_diffusion_loop = lambda *args, **kwargs: rk_ode_solver_diffusion_loop(*args, **kwargs, rk_steps_weights=[[0, 1]]) heun_ode_solver_diffusion_loop = lambda *args, **kwargs: rk_ode_solver_diffusion_loop(*args, **kwargs, rk_steps_weights=[[0, 0.5], [1, 0.5]]) rk4_ode_solver_diffusion_loop = lambda *args, **kwargs: rk_ode_solver_diffusion_loop(*args, **kwargs, rk_steps_weights=[[0, 1 / 6], [1 / 2, 1 / 3], [1 / 2, 1 / 3], [1, 1 / 6]])