Spaces:
Runtime error
Runtime error
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import gradio as gr | |
| import torch | |
| title = "Custom AI ChatBot" | |
| description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)" | |
| examples = [["How are you?"]] | |
| tokenizer = AutoTokenizer.from_pretrained("william4416/bewtestingone") | |
| model = AutoModelForCausalLM.from_pretrained("william4416/bewtestingone") | |
| def predict(input, history=[]): | |
| # tokenize the new input sentence | |
| new_user_input_ids = tokenizer.encode( | |
| input + tokenizer.eos_token, return_tensors="pt" | |
| ) | |
| # append the new user input tokens to the chat history | |
| bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) | |
| # generate a response | |
| history = model.generate( | |
| bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id | |
| ).tolist() | |
| # convert the tokens to text | |
| response = tokenizer.decode(history[0]) | |
| return response, history | |
| def main(): | |
| gr.Interface( | |
| fn=predict, | |
| title=title, | |
| description=description, | |
| examples=examples, | |
| inputs=["text", "state"], | |
| outputs=["text", "state"], | |
| theme="finlaymacklon/boxy_violet", | |
| ).launch() | |
| if __name__ == "__main__": | |
| main() | |