Spaces:
Runtime error
Runtime error
inclusive-ml
commited on
Commit
·
10332be
1
Parent(s):
4c89d7a
classification only
Browse files
app.py
CHANGED
@@ -4,35 +4,16 @@ import spacy
|
|
4 |
from spacy import displacy
|
5 |
import plotly.express as px
|
6 |
import numpy as np
|
7 |
-
st.set_page_config(page_title="
|
8 |
-
st.title("
|
9 |
st.write("_This web application is intended for educational use, please do not upload any sensitive information._")
|
10 |
-
st.
|
11 |
-
|
12 |
-
st.write("- __Named Entity Recognition:__ Identifying all geopolitical entities, organizations, people, locations, or dates in a body of text.")
|
13 |
-
st.write("- __Text Classification:__ Placing a piece of text into one or more categories.")
|
14 |
-
st.write("- __Text Summarization:__ Condensing larger bodies of text into smaller bodies of text.")
|
15 |
-
option = st.selectbox('Please select from the list',('','Sentiment Analysis','Named Entity Recognition', 'Text Classification','Text Summarization'))
|
16 |
-
@st.cache(allow_output_mutation=True, show_spinner=False)
|
17 |
-
def Loading_Model_1():
|
18 |
-
sum2 = pipeline("summarization",framework="pt")
|
19 |
-
return sum2
|
20 |
@st.cache(allow_output_mutation=True, show_spinner=False)
|
21 |
-
def
|
22 |
class1 = pipeline("zero-shot-classification",framework="pt")
|
23 |
return class1
|
24 |
-
|
25 |
-
def Loading_Model_3():
|
26 |
-
sentiment = pipeline("sentiment-analysis", framework="pt")
|
27 |
-
return sentiment
|
28 |
-
@st.cache(allow_output_mutation=True, show_spinner=False)
|
29 |
-
def Loading_Model_4():
|
30 |
-
nlp = spacy.load('en_core_web_sm')
|
31 |
-
return nlp
|
32 |
-
@st.cache(allow_output_mutation=True)
|
33 |
-
def entRecognizer(entDict, typeEnt):
|
34 |
-
entList = [ent for ent in entDict if entDict[ent] == typeEnt]
|
35 |
-
return entList
|
36 |
def plot_result(top_topics, scores):
|
37 |
top_topics = np.array(top_topics)
|
38 |
scores = np.array(scores)
|
@@ -47,70 +28,18 @@ def plot_result(top_topics, scores):
|
|
47 |
fig.update(layout_coloraxis_showscale=False)
|
48 |
fig.update_traces(texttemplate='%{text:0.1f}%', textposition='outside')
|
49 |
st.plotly_chart(fig)
|
50 |
-
with st.spinner(text="Please wait for the models to load. This should take approximately 60 seconds."):
|
51 |
-
sum2 = Loading_Model_1()
|
52 |
-
class1 = Loading_Model_2()
|
53 |
-
sentiment = Loading_Model_3()
|
54 |
-
nlp = Loading_Model_4()
|
55 |
-
if option == 'Text Classification':
|
56 |
-
cat1 = st.text_input('Enter each possible category name (separated by a comma). Maximum 5 categories.')
|
57 |
-
text = st.text_area('Enter Text Below:', height=200)
|
58 |
-
submit = st.button('Generate')
|
59 |
-
if submit:
|
60 |
-
st.subheader("Classification Results:")
|
61 |
-
labels1 = cat1.strip().split(',')
|
62 |
-
result = class1(text, candidate_labels=labels1)
|
63 |
-
cat1name = result['labels'][0]
|
64 |
-
cat1prob = result['scores'][0]
|
65 |
-
st.write('Category: {} | Probability: {:.1f}%'.format(cat1name,(cat1prob*100)))
|
66 |
-
plot_result(result['labels'][::-1][-10:], result['scores'][::-1][-10:])
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
num_beamer = st.slider('Speed vs quality of summary (1 is fastest)', min_value=1, max_value=8, value=4, step=1)
|
71 |
-
text = st.text_area('Enter Text Below (maximum 800 words):', height=300)
|
72 |
-
submit = st.button('Generate')
|
73 |
-
if submit:
|
74 |
-
st.subheader("Summary:")
|
75 |
-
with st.spinner(text="This may take a moment..."):
|
76 |
-
summWords = sum2(text, max_length=max_lengthy, min_length=15, num_beams=num_beamer, do_sample=True, early_stopping=True, repetition_penalty=1.5, length_penalty=1.5)
|
77 |
-
text2 =summWords[0]["summary_text"]
|
78 |
-
st.write(text2)
|
79 |
-
if option == 'Sentiment Analysis':
|
80 |
-
text = st.text_area('Enter Text Below:', height=200)
|
81 |
-
submit = st.button('Generate')
|
82 |
-
if submit:
|
83 |
-
st.subheader("Sentiment:")
|
84 |
-
result = sentiment(text)
|
85 |
-
sent = result[0]['label']
|
86 |
-
cert = result[0]['score']
|
87 |
-
st.write('Text Sentiment: {} | Probability: {:.1f}%'.format(sent,(cert*100)))
|
88 |
-
if option == 'Named Entity Recognition':
|
89 |
-
text = st.text_area('Enter Text Below:', height=300)
|
90 |
-
submit = st.button('Generate')
|
91 |
-
if submit:
|
92 |
-
entities = []
|
93 |
-
entityLabels = []
|
94 |
-
doc = nlp(text)
|
95 |
-
for ent in doc.ents:
|
96 |
-
entities.append(ent.text)
|
97 |
-
entityLabels.append(ent.label_)
|
98 |
-
entDict = dict(zip(entities, entityLabels))
|
99 |
-
entOrg = entRecognizer(entDict, "ORG")
|
100 |
-
entPerson = entRecognizer(entDict, "PERSON")
|
101 |
-
entDate = entRecognizer(entDict, "DATE")
|
102 |
-
entGPE = entRecognizer(entDict, "GPE")
|
103 |
-
entLoc = entRecognizer(entDict, "LOC")
|
104 |
-
options = {"ents": ["ORG", "GPE", "PERSON", "LOC", "DATE"]}
|
105 |
-
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem">{}</div>"""
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
4 |
from spacy import displacy
|
5 |
import plotly.express as px
|
6 |
import numpy as np
|
7 |
+
st.set_page_config(page_title="Text Classification'")
|
8 |
+
st.title("Text Classification'")
|
9 |
st.write("_This web application is intended for educational use, please do not upload any sensitive information._")
|
10 |
+
st.write("Placing a piece of text into one or more categories.")
|
11 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
@st.cache(allow_output_mutation=True, show_spinner=False)
|
13 |
+
def Loading_Classifier():
|
14 |
class1 = pipeline("zero-shot-classification",framework="pt")
|
15 |
return class1
|
16 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def plot_result(top_topics, scores):
|
18 |
top_topics = np.array(top_topics)
|
19 |
scores = np.array(scores)
|
|
|
28 |
fig.update(layout_coloraxis_showscale=False)
|
29 |
fig.update_traces(texttemplate='%{text:0.1f}%', textposition='outside')
|
30 |
st.plotly_chart(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
with st.spinner(text="Please wait for the models to load. This could take up to 60 seconds."):
|
33 |
+
class1 = Loading_Classifier()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
cat1 = st.text_input('Enter each possible category name (separated by a comma). Maximum 5 categories.')
|
36 |
+
text = st.text_area('Enter Text Below:', height=200)
|
37 |
+
submit = st.button('Generate')
|
38 |
+
if submit:
|
39 |
+
st.subheader("Classification Results:")
|
40 |
+
labels1 = cat1.strip().split(',')
|
41 |
+
result = class1(text, candidate_labels=labels1)
|
42 |
+
cat1name = result['labels'][0]
|
43 |
+
cat1prob = result['scores'][0]
|
44 |
+
st.write('Category: {} | Probability: {:.1f}%'.format(cat1name,(cat1prob*100)))
|
45 |
+
plot_result(result['labels'][::-1][-10:], result['scores'][::-1][-10:])
|