MLSalesPitch / MLSalesPitch.py
wellvolks
Primeira versão
57a506a
raw
history blame
12.3 kB
import time
import urllib
import spacy
import pandas as pd
import unicodedata
import requests
import json
import os
import tiktoken
from bs4 import BeautifulSoup
from openai import OpenAI
from langchain.document_loaders import DataFrameLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
# from langchain.vectorstores.deeplake import DeepLake
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel
from urllib.parse import quote
from urllib.request import Request
class MLSalesPitch:
def __init__(self):
self.retriever_sales_pitch = None
self.retriever_about = None
self.TOKEN_ML = os.environ['TOKEN_ML']
self.OPENAI_API_KEY = os.environ['OPENAI_KEY']
self.client = OpenAI()
self.nlp = None#spacy.load("pt_core_news_sm")
OpenAI.api_key = self.OPENAI_API_KEY
self.output_parser = StrOutputParser()
self.model = ChatOpenAI(openai_api_key=self.OPENAI_API_KEY, model="gpt-3.5-turbo")
template = """Com base nas seguintes informações de produtos fornecidas abaixo:
{about}
Crie um discurso muito convincente e interessante de venda para os seguintes produtos:
{products}
Que fazem parte da sub_categoria:
{sub_category}
Pontue bem as vantagens dos produtos e suas caracteristicas bem como a grande oportunidade que o cliente está tendo em adquiri-los
Tenha como base os seguintes discursos de venda:
{sales_pitch}
Não fique preso apenas um discurso de venda. Leve mais em consideração a construção dos discrusos bem como as vantagens, caracterisitcas e descrição dos produtos.
Adicione preços para os produtos como variáveis com prefixo _PRECO_
Não se identifique e não coloque o nome da empresa
"""
self.prompt = ChatPromptTemplate.from_template(template)
def get_ml_product_descriptions(self):
f = open('/data/ml_categories.json', 'r')
categories_json = json.load(f)
df = pd.read_csv('/data/mercado_livre_products.csv')
for item in categories_json:
category = {'name': categories_json[item]['name'], 'id': categories_json[item]['id']}
for sub_category in categories_json[item]['children_categories']:
offset = 0
limit = 50
while offset < 1000:
headers = {'Authorization': f'Bearer {self.TOKEN_ML}'}
ans = \
requests.get(f"https://api.mercadolibre.com/sites/MLB/search?category="
f"{sub_category['id']}&search_type=scan&offset={offset}&limit=50",
headers=headers)
if ans.ok:
data_ans = ans.json()
print(
f"[{sub_category['name']}]: {100.0 * (offset / int(data_ans['paging']['total']))}"
f" downloaded...")
if len(data_ans['results']) == 0:
break
lt_prod_info = [{'id': info['id'], 'title': info['title']} for info in data_ans['results']]
for info in lt_prod_info:
resp = requests.get(f"https://api.mercadolibre.com/items/{info['id']}/description",
headers=headers)
if resp.ok:
data_resp = resp.json()
if 'plain_text' in data_resp:
info['description'] = data_resp['plain_text']
df_tmp = pd.DataFrame.from_dict(lt_prod_info)
df_tmp['category'] = category['name']
df_tmp['sub_category'] = sub_category['name']
df: pd.DataFrame = pd.concat([df, df_tmp])
df.to_csv('/data/mercado_livre_products.csv', header=True, index=False)
else:
print(f'FAIL! Error {ans.status_code}: {ans.content}')
offset = offset + limit + 1
@staticmethod
def enrich_with_google_search():
df = pd.read_csv('/data/mercado_livre_products.csv', low_memory=False)
df.to_csv('/data/mercado_livre_products_enriched_with_google_about.csv', header=True, index=False)
p_names = list(set(df['title'].to_list()))
map_name = {}
k = 0
for name in p_names:
url = 'https://www.google.com/search?q=' + quote('sobre ou descrição: ' + name)
req = Request(url, headers={'User-Agent': 'Mozilla/5.0'})
lt_text = []
try:
response = urllib.request.urlopen(req)
if response.code == 429:
print(f'Sleeping {int(response.headers["Retry-After"])} seconds...')
time.sleep(int(response.headers["Retry-After"]))
content = response.read().decode('UTF-8').replace(u'\xa0', u' ')
soup = BeautifulSoup(content, 'html.parser')
div_bs4 = soup.find_all('div', {"class": "BNeawe s3v9rd AP7Wnd"})
lt_text = [p.get_text() for p in div_bs4]
except Exception as error:
print(error)
map_name[name] = ', '.join(lt_text)
df2 = pd.read_csv('/data/mercado_livre_products_enriched_with_google_about.csv', low_memory=False)
df2['about'] = df2[['title', 'about']].apply(
lambda x: map_name[x[0]] if ((x[0] in map_name.keys()) and (x[1] is None)) else x[1], axis=1)
df2.to_csv('/data/mercado_livre_products_enriched_with_google_about.csv', header=True, index=False)
k = k + 1
print(f'[{k} of {len(p_names)}]: {(k / len(p_names)) * 100.0}% completed')
time.sleep(1)
def cleans_and_preprocesses_the_data(self) -> pd.DataFrame:
df_ml = pd.read_csv('/data/mercado_livre_products_enriched_with_google_about.csv', low_memory=False)
df_ml = df_ml[~(df_ml['description'].isna() | df_ml['about'].isna())]
df_ml['description'] = df_ml['description'].apply(lambda x: self.__clean_txt(x))
df_ml['description'] = df_ml['description'].apply(lambda x: x[0: self.__find_best_position_to_cut(x) + 1])
df_ml['about'] = df_ml['about'].apply(lambda x: x[0: self.__find_best_position_to_cut(x) + 1])
df_ml['size'] = df_ml['description'].apply(lambda x: self.__count_tokens(x))
df_ml = df_ml.sort_values(by=['size'], ascending=False)
df_ml = df_ml.reset_index(drop=True)
df_ml['sales_pitch'] = df_ml[['title', 'sub_category', 'description']].apply(
lambda x: f'Nome do produto:{x[0]}\nCategoria do produto:{x[1]}\nSugestão de como vender:{x[2]}', axis=1)
df_ml['about'] = df_ml[['title', 'sub_category', 'about']].apply(
lambda x: f'Nome do produto:{x[0]}\nCategoria do produto:{x[1]}\nSobre o produto:{x[2]}', axis=1)
# df_ml['sales_pitch'] = df_ml['sales_pitch'].apply(lambda x: self.__chat_gpt_summarize(x))
# map_about = {}
# lt_about = list(df_ml[['id', 'about']].apply(lambda x: {'id': x[0], 'about': x[1]}, axis=1).to_list())
# for about in lt_about:
# map_about[about['id']] = self.__chat_gpt_summarize(about['about'])
# df_ml['about'] = df_ml['about'].map(map_about)
df_ml = df_ml[['title', 'category', 'sub_category', 'sales_pitch', 'about']]
return df_ml
def embedding(self, df_ml: pd.DataFrame = pd.DataFrame(), add_docs=False):
if add_docs:
loader_sales_pitch = DataFrameLoader(df_ml, page_content_column="sales_pitch")
documents_sales_pitch = loader_sales_pitch.load()
documents_sales_pitch.extend(loader_sales_pitch.load_and_split())
loader_about = DataFrameLoader(df_ml, page_content_column="about")
documents_about = loader_about.load()
documents_about.extend(loader_about.load_and_split())
text_splitter = CharacterTextSplitter(chunk_size=2000, separator='\n', chunk_overlap=0)
docs_sales_pitch = text_splitter.split_documents(documents_sales_pitch)
docs_about = text_splitter.split_documents(documents_sales_pitch)
else:
docs_sales_pitch = None
docs_about = None
embeddings = HuggingFaceEmbeddings()
from langchain.vectorstores.deeplake import DeepLake
vector_store_sales_pitch = \
DeepLake(dataset_path="data/my_deeplake/sales_pitch/", embedding_function=embeddings, read_only=True)
vector_store_about = \
DeepLake(dataset_path="data/my_deeplake/about/", embedding_function=embeddings, read_only=True)
if add_docs:
vector_store_sales_pitch.add_documents(docs_sales_pitch)
vector_store_about.add_documents(docs_about)
self.retriever_sales_pitch = vector_store_sales_pitch.as_retriever()
self.retriever_about = vector_store_about.as_retriever()
def generate_sales_pitch(self, query: dict) -> str:
chain = RunnableParallel({
"sales_pitch": lambda x: self.retriever_sales_pitch.get_relevant_documents(x["products"])[0:1],
"about": lambda x: self.retriever_about.get_relevant_documents(x["products"])[0:1],
"products": lambda x: x["products"],
"sub_category": lambda x: x["sub_category"]
}) | self.prompt | self.model | self.output_parser
return chain.invoke(query)
@staticmethod
def __count_tokens(text):
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
return len(encoding.encode(text))
def __text_to_chunks(self, text):
chunks = [[]]
chunk_total_words = 0
sentences = self.nlp(text)
for sentence in sentences.sents:
chunk_total_words += len(sentence.text.split(" "))
if chunk_total_words > 2000:
chunks.append([])
chunk_total_words = len(sentence.text.split(" "))
chunks[len(chunks) - 1].append(sentence.text)
return chunks
def __chat_gpt_summarize(self, text):
prompt = f"Resuma o seguinte texto em no máximo 5 frases:\n{text}"
response = self.client.completions.create(
model="gpt-3.5-turbo-instruct",
prompt=prompt,
temperature=0.3,
max_tokens=150,
top_p=1,
frequency_penalty=0,
presence_penalty=1
)
return response.choices[0].text
def __summarize_text(self, text):
chunks = self.__text_to_chunks(text)
chunk_summaries = []
for chunk in chunks:
chunk_summary = self.__chat_gpt_summarize(" ".join(chunk))
chunk_summaries.append(chunk_summary)
break
summary = " ".join(chunk_summaries)
return summary
def __find_best_position_to_cut(self, text):
lo = 0
hi = len(text) - 1
mid = hi
while lo <= hi:
mid = (lo + hi) >> 1
if self.__count_tokens(text[0:mid]) >= 1000:
hi = mid - 1
else:
lo = mid + 1
return mid
@staticmethod
def __clean_txt(txt):
while txt.find('\n\n') != -1:
txt = txt.replace('\n\n', '\n')
while txt.find('--') != -1:
txt = txt.replace('--', '-')
while txt.find(' ') != -1:
txt = txt.replace(' ', ' ')
while txt.find('__') != -1:
txt = txt.replace('__', '_')
while txt.find('\n_\n') != -1:
txt = txt.replace('\n_\n', '\n')
while txt.find('\n \n') != -1:
txt = txt.replace('\n \n', '\n')
return txt