from fastapi import FastAPI from pydantic import BaseModel import torch import base64 from io import BytesIO from PIL import Image from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor from qwen_vl_utils import process_vision_info # Initialize FastAPI app = FastAPI() # Load the model and processor #checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct" checkpoint = "Qwen/Qwen2.5-VL-7B-Instruct" #checkpoint = "Qwen/Qwen2.5-VL-72B-Instruct" min_pixels = 256 * 28 * 28 max_pixels = 1280 * 28 * 28 processor = AutoProcessor.from_pretrained( checkpoint, min_pixels=min_pixels, max_pixels=max_pixels, use_fase=True ) model = Qwen2_5_VLForConditionalGeneration.from_pretrained( checkpoint, torch_dtype=torch.bfloat16, device_map="auto", ) # Define the request schema class ImageRequest(BaseModel): image_base64: str # Base64 encoded image prompt: str # Text prompt @app.get("/") def read_root(): return {"message": "API is live. Use the /predict endpoint."} @app.post("/predict") # Changed from GET to POST async def predict(request: ImageRequest): # Decode the base64 image try: image_data = base64.b64decode(request.image_base64) image = Image.open(BytesIO(image_data)).convert("RGB") except Exception as e: return {"error": f"Invalid base64 image data: {str(e)}"} # Create message structure messages = [ {"role": "system", "content": "You are a helpful assistant with vision abilities."}, {"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": request.prompt}]}, ] # Process inputs text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ).to(model.device) # Run inference with torch.no_grad(): generated_ids = model.generate(**inputs, max_new_tokens=4096) # 128 # Process output generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_texts = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return {"response": output_texts[0]} class SummaryRequest(BaseModel): prompt: str # Input text to summarize @app.post("/summary") async def summary(request: SummaryRequest): # Create message structure messages = [ {"role": "system", "content": "You are a helpful assistant that summarizes text."}, {"role": "user", "content": [{"type": "text", "text": request.prompt}]}, ] # Process inputs (text-only) text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor( text=[text], padding=True, return_tensors="pt", ).to(model.device) # Run inference with torch.no_grad(): generated_ids = model.generate(**inputs, max_new_tokens=4096) # Adjust max_new_tokens for summary length # Process output generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_texts = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return {"response": output_texts[0]}