Spaces:
Paused
Paused
Update main.py
Browse files
main.py
CHANGED
@@ -1,13 +1,20 @@
|
|
1 |
-
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
3 |
from qwen_vl_utils import process_vision_info
|
4 |
-
import torch
|
5 |
|
|
|
6 |
app = FastAPI()
|
7 |
|
|
|
8 |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
|
9 |
-
min_pixels = 256*28*28
|
10 |
-
max_pixels = 1280*28*28
|
|
|
11 |
processor = AutoProcessor.from_pretrained(
|
12 |
checkpoint,
|
13 |
min_pixels=min_pixels,
|
@@ -17,22 +24,33 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
17 |
checkpoint,
|
18 |
torch_dtype=torch.bfloat16,
|
19 |
device_map="auto",
|
20 |
-
# attn_implementation="flash_attention_2",
|
21 |
)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
23 |
@app.get("/")
|
24 |
def read_root():
|
25 |
return {"message": "API is live. Use the /predict endpoint."}
|
26 |
|
27 |
-
@app.
|
28 |
-
def predict(
|
29 |
-
|
30 |
-
|
31 |
-
)
|
|
|
|
|
|
|
|
|
|
|
32 |
messages = [
|
33 |
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
|
34 |
-
{"role": "user", "content": [{"type": "image", "image":
|
35 |
]
|
|
|
|
|
36 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
37 |
image_inputs, video_inputs = process_vision_info(messages)
|
38 |
inputs = processor(
|
@@ -42,10 +60,15 @@ def predict(
|
|
42 |
padding=True,
|
43 |
return_tensors="pt",
|
44 |
).to(model.device)
|
|
|
|
|
45 |
with torch.no_grad():
|
46 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
|
|
|
|
47 |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
48 |
output_texts = processor.batch_decode(
|
49 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
50 |
)
|
|
|
51 |
return {"response": output_texts[0]}
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import torch
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
8 |
from qwen_vl_utils import process_vision_info
|
|
|
9 |
|
10 |
+
# Initialize FastAPI
|
11 |
app = FastAPI()
|
12 |
|
13 |
+
# Load the model and processor
|
14 |
checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct"
|
15 |
+
min_pixels = 256 * 28 * 28
|
16 |
+
max_pixels = 1280 * 28 * 28
|
17 |
+
|
18 |
processor = AutoProcessor.from_pretrained(
|
19 |
checkpoint,
|
20 |
min_pixels=min_pixels,
|
|
|
24 |
checkpoint,
|
25 |
torch_dtype=torch.bfloat16,
|
26 |
device_map="auto",
|
|
|
27 |
)
|
28 |
|
29 |
+
# Define the request schema
|
30 |
+
class ImageRequest(BaseModel):
|
31 |
+
image_base64: str # Base64 encoded image
|
32 |
+
prompt: str # Text prompt
|
33 |
+
|
34 |
@app.get("/")
|
35 |
def read_root():
|
36 |
return {"message": "API is live. Use the /predict endpoint."}
|
37 |
|
38 |
+
@app.post("/predict") # Changed from GET to POST
|
39 |
+
async def predict(request: ImageRequest):
|
40 |
+
# Decode the base64 image
|
41 |
+
try:
|
42 |
+
image_data = base64.b64decode(request.image_base64)
|
43 |
+
image = Image.open(BytesIO(image_data)).convert("RGB")
|
44 |
+
except Exception as e:
|
45 |
+
return {"error": f"Invalid base64 image data: {str(e)}"}
|
46 |
+
|
47 |
+
# Create message structure
|
48 |
messages = [
|
49 |
{"role": "system", "content": "You are a helpful assistant with vision abilities."},
|
50 |
+
{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": request.prompt}]},
|
51 |
]
|
52 |
+
|
53 |
+
# Process inputs
|
54 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
55 |
image_inputs, video_inputs = process_vision_info(messages)
|
56 |
inputs = processor(
|
|
|
60 |
padding=True,
|
61 |
return_tensors="pt",
|
62 |
).to(model.device)
|
63 |
+
|
64 |
+
# Run inference
|
65 |
with torch.no_grad():
|
66 |
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
67 |
+
|
68 |
+
# Process output
|
69 |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
70 |
output_texts = processor.batch_decode(
|
71 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
72 |
)
|
73 |
+
|
74 |
return {"response": output_texts[0]}
|