Spaces:
Paused
Paused
from fastapi import FastAPI | |
from pydantic import BaseModel | |
import torch | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
# Initialize FastAPI | |
app = FastAPI() | |
# Load the model and processor | |
#checkpoint = "Qwen/Qwen2.5-VL-3B-Instruct" | |
checkpoint = "Qwen/Qwen2.5-VL-7B-Instruct" | |
#checkpoint = "Qwen/Qwen2.5-VL-72B-Instruct" | |
min_pixels = 256 * 28 * 28 | |
max_pixels = 1280 * 28 * 28 | |
processor = AutoProcessor.from_pretrained( | |
checkpoint, | |
min_pixels=min_pixels, | |
max_pixels=max_pixels, | |
use_fase=True | |
) | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
checkpoint, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
) | |
# Define the request schema | |
class ImageRequest(BaseModel): | |
image_base64: str # Base64 encoded image | |
prompt: str # Text prompt | |
def read_root(): | |
return {"message": "API is live. Use the /predict endpoint."} | |
# Changed from GET to POST | |
async def predict(request: ImageRequest): | |
# Decode the base64 image | |
try: | |
image_data = base64.b64decode(request.image_base64) | |
image = Image.open(BytesIO(image_data)).convert("RGB") | |
except Exception as e: | |
return {"error": f"Invalid base64 image data: {str(e)}"} | |
# Create message structure | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant with vision abilities."}, | |
{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": request.prompt}]}, | |
] | |
# Process inputs | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
).to(model.device) | |
# Run inference | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=4096) # 128 | |
# Process output | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_texts = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return {"response": output_texts[0]} | |
class SummaryRequest(BaseModel): | |
prompt: str # Input text to summarize | |
async def summary(request: SummaryRequest): | |
# Create message structure | |
messages = [ | |
{"role": "system", "content": "You are a helpful assistant that summarizes text."}, | |
{"role": "user", "content": [{"type": "text", "text": request.prompt}]}, | |
] | |
# Process inputs (text-only) | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[text], | |
padding=True, | |
return_tensors="pt", | |
).to(model.device) | |
# Run inference | |
with torch.no_grad(): | |
generated_ids = model.generate(**inputs, max_new_tokens=4096) # Adjust max_new_tokens for summary length | |
# Process output | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_texts = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
return {"response": output_texts[0]} |