import torch import torch.nn as nn from .vit import ( _make_pretrained_vitb_rn50_384, _make_pretrained_vitl16_384, _make_pretrained_vitb16_384, forward_vit, ) def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",): if backbone == "vitl16_384": pretrained = _make_pretrained_vitl16_384( use_pretrained, hooks=hooks, use_readout=use_readout ) scratch = _make_scratch( [256, 512, 1024, 1024], features, groups=groups, expand=expand ) # ViT-L/16 - 85.0% Top1 (backbone) elif backbone == "vitb_rn50_384": pretrained = _make_pretrained_vitb_rn50_384( use_pretrained, hooks=hooks, use_vit_only=use_vit_only, use_readout=use_readout, ) scratch = _make_scratch( [256, 512, 768, 768], features, groups=groups, expand=expand ) # ViT-H/16 - 85.0% Top1 (backbone) elif backbone == "vitb16_384": pretrained = _make_pretrained_vitb16_384( use_pretrained, hooks=hooks, use_readout=use_readout ) scratch = _make_scratch( [96, 192, 384, 768], features, groups=groups, expand=expand ) # ViT-B/16 - 84.6% Top1 (backbone) elif backbone == "resnext101_wsl": pretrained = _make_pretrained_resnext101_wsl(use_pretrained) scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3 elif backbone == "efficientnet_lite3": pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable) scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3 else: print(f"Backbone '{backbone}' not implemented") assert False return pretrained, scratch def _make_scratch(in_shape, out_shape, groups=1, expand=False): scratch = nn.Module() out_shape1 = out_shape out_shape2 = out_shape out_shape3 = out_shape out_shape4 = out_shape if expand==True: out_shape1 = out_shape out_shape2 = out_shape*2 out_shape3 = out_shape*4 out_shape4 = out_shape*8 scratch.layer1_rn = nn.Conv2d( in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer2_rn = nn.Conv2d( in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer3_rn = nn.Conv2d( in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) scratch.layer4_rn = nn.Conv2d( in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups ) return scratch def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False): efficientnet = torch.hub.load( "rwightman/gen-efficientnet-pytorch", "tf_efficientnet_lite3", pretrained=use_pretrained, exportable=exportable ) return _make_efficientnet_backbone(efficientnet) def _make_efficientnet_backbone(effnet): pretrained = nn.Module() pretrained.layer1 = nn.Sequential( effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2] ) pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3]) pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5]) pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9]) return pretrained def _make_resnet_backbone(resnet): pretrained = nn.Module() pretrained.layer1 = nn.Sequential( resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 ) pretrained.layer2 = resnet.layer2 pretrained.layer3 = resnet.layer3 pretrained.layer4 = resnet.layer4 return pretrained def _make_pretrained_resnext101_wsl(use_pretrained): resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") return _make_resnet_backbone(resnet) class Interpolate(nn.Module): """Interpolation module. """ def __init__(self, scale_factor, mode, align_corners=False): """Init. Args: scale_factor (float): scaling mode (str): interpolation mode """ super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: interpolated data """ x = self.interp( x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners ) return x class ResidualConvUnit(nn.Module): """Residual convolution module. """ def __init__(self, features): """Init. Args: features (int): number of features """ super().__init__() self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True ) self.relu = nn.ReLU(inplace=True) def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.relu(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) return out + x class FeatureFusionBlock(nn.Module): """Feature fusion block. """ def __init__(self, features): """Init. Args: features (int): number of features """ super(FeatureFusionBlock, self).__init__() self.resConfUnit1 = ResidualConvUnit(features) self.resConfUnit2 = ResidualConvUnit(features) def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: output += self.resConfUnit1(xs[1]) output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=True ) return output class ResidualConvUnit_custom(nn.Module): """Residual convolution module. """ def __init__(self, features, activation, bn): """Init. Args: features (int): number of features """ super().__init__() self.bn = bn self.groups=1 self.conv1 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) self.conv2 = nn.Conv2d( features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups ) if self.bn==True: self.bn1 = nn.BatchNorm2d(features) self.bn2 = nn.BatchNorm2d(features) self.activation = activation self.skip_add = nn.quantized.FloatFunctional() def forward(self, x): """Forward pass. Args: x (tensor): input Returns: tensor: output """ out = self.activation(x) out = self.conv1(out) if self.bn==True: out = self.bn1(out) out = self.activation(out) out = self.conv2(out) if self.bn==True: out = self.bn2(out) if self.groups > 1: out = self.conv_merge(out) return self.skip_add.add(out, x) # return out + x class FeatureFusionBlock_custom(nn.Module): """Feature fusion block. """ def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True): """Init. Args: features (int): number of features """ super(FeatureFusionBlock_custom, self).__init__() self.deconv = deconv self.align_corners = align_corners self.groups=1 self.expand = expand out_features = features if self.expand==True: out_features = features//2 self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) self.skip_add = nn.quantized.FloatFunctional() def forward(self, *xs): """Forward pass. Returns: tensor: output """ output = xs[0] if len(xs) == 2: res = self.resConfUnit1(xs[1]) output = self.skip_add.add(output, res) # output += res output = self.resConfUnit2(output) output = nn.functional.interpolate( output, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) output = self.out_conv(output) return output