#References: 1. https://www.kdnuggets.com/2021/03/speech-text-wav2vec.html #2. https://www.youtube.com/watch?v=4CoVcsxZphE #3. https://www.analyticsvidhya.com/blog/2021/02/hugging-face-introduces-the-first-automatic-speech-recognition-model-wav2vec2/ #Importing all the necessary packages import nltk import librosa import torch import gradio as gr from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC nltk.download("punkt") #Loading the model and the tokenizer model_name = "wasertech/wav2vec2-cv-fr-9" tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name) model = Wav2Vec2ForCTC.from_pretrained(model_name) def load_data(input_file): """ Function for resampling to ensure that the speech input is sampled at 16KHz. """ #read the file speech, sample_rate = librosa.load(input_file) #make it 1-D if len(speech.shape) > 1: speech = speech[:,0] + speech[:,1] #Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz. if sample_rate !=16000: speech = librosa.resample(speech, sample_rate,16000) return speech def correct_casing(input_sentence): """ This function is for correcting the casing of the generated transcribed text """ sentences = nltk.sent_tokenize(input_sentence) return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences])) def asr_transcript(input_file): """This function generates transcripts for the provided audio input """ speech = load_data(input_file) #Tokenize input_values = tokenizer(speech, return_tensors="pt").input_values #Take logits logits = model(input_values).logits #Take argmax predicted_ids = torch.argmax(logits, dim=-1) #Get the words from predicted word ids transcription = tokenizer.decode(predicted_ids[0]) #Output is all upper case transcription = correct_casing(transcription.lower()) return transcription gr.Interface(asr_transcript, inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Please record your voice"), outputs = gr.outputs.Textbox(label="Output Text"), title="🎙️ Parlez, on vous écoute !", description = "Enregistrez un audio ou utilisez les examples pour interagir avec notre dernier modèle.", examples = [["wav/1.wav"], ["wav/2.wav"], ["wav/3.wav"], ["wav/4.wav"], ["wav/5.wav"]], theme="grass").launch()