ESM2Bind / app.py
wangjin2000's picture
Update app.py
3385d13 verified
#ref: https://huggingface.co/blog/AmelieSchreiber/esmbind
import gradio as gr
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
#import wandb
import numpy as np
import torch
import torch.nn as nn
import pickle
import xml.etree.ElementTree as ET
from datetime import datetime
from sklearn.model_selection import train_test_split
from sklearn.utils.class_weight import compute_class_weight
from sklearn.metrics import (
accuracy_score,
precision_recall_fscore_support,
roc_auc_score,
matthews_corrcoef
)
from transformers import (
AutoModelForTokenClassification,
AutoTokenizer,
DataCollatorForTokenClassification,
TrainingArguments,
Trainer
)
from peft import PeftModel
from datasets import Dataset
from accelerate import Accelerator
# Imports specific to the custom peft lora model
from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType
from plot_pdb import plot_struc
def suggest(option):
if option == "Plastic degradation protein":
suggestion = "MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ"
elif option == "Default protein":
#suggestion = "MAPLRKTYVLKLYVAGNTPNSVRALKTLNNILEKEFKGVYALKVIDVLKNPQLAEEDKILATPTLAKVLPPPVRRIIGDLSNREKVLIGLDLLYEEIGDQAEDDLGLE"
suggestion = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT"
elif option == "Antifreeze protein":
suggestion = "QCTGGADCTSCTGACTGCGNCPNAVTCTNSQHCVKANTCTGSTDCNTAQTCTNSKDCFEANTCTDSTNCYKATACTNSSGCPGH"
elif option == "AI Generated protein":
suggestion = "MSGMKKLYEYTVTTLDEFLEKLKEFILNTSKDKIYKLTITNPKLIKDIGKAIAKAAEIADVDPKEIEEMIKAVEENELTKLVITIEQTDDKYVIKVELENEDGLVHSFEIYFKNKEEMEKFLELLEKLISKLSGS"
elif option == "7-bladed propeller fold":
suggestion = "VKLAGNSSLCPINGWAVYSKDNSIRIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTVKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDGTSWLTIGISGPDNGAVAVLKYNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSNGQASYKIFKMEKGKVVKSVELDAPNYHYEECSCYPNAGEITCVCRDNWHGSNRPWVSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSSNGAYGVKGFSFKYGNGVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTGLDCIRPCFWVELIRGRPKESTIWTSGSSISFCGVNSDTVGWSWPDGAELPFTIDK"
else:
suggestion = ""
return suggestion
# Helper Functions and Data Preparation
def truncate_labels(labels, max_length):
"""Truncate labels to the specified max_length."""
return [label[:max_length] for label in labels]
def compute_metrics(p):
"""Compute metrics for evaluation."""
predictions, labels = p
predictions = np.argmax(predictions, axis=2)
# Remove padding (-100 labels)
predictions = predictions[labels != -100].flatten()
labels = labels[labels != -100].flatten()
# Compute accuracy
accuracy = accuracy_score(labels, predictions)
# Compute precision, recall, F1 score, and AUC
precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary')
auc = roc_auc_score(labels, predictions)
# Compute MCC
mcc = matthews_corrcoef(labels, predictions)
return {'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1': f1, 'auc': auc, 'mcc': mcc}
def compute_loss(model, inputs):
"""Custom compute_loss function."""
logits = model(**inputs).logits
labels = inputs["labels"]
loss_fct = nn.CrossEntropyLoss(weight=class_weights)
active_loss = inputs["attention_mask"].view(-1) == 1
active_logits = logits.view(-1, model.config.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
return loss
# Define Custom Trainer Class
# Since we are using class weights, due to the imbalance between non-binding residues and binding residues, we will need a custom weighted trainer.
class WeightedTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
outputs = model(**inputs)
loss = compute_loss(model, inputs)
return (loss, outputs) if return_outputs else loss
# Predict binding site with finetuned PEFT model
def predict_bind(base_model_path,PEFT_model_path,input_seq):
# Load the model
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path)
loaded_model = PeftModel.from_pretrained(base_model, PEFT_model_path)
# Ensure the model is in evaluation mode
loaded_model.eval()
# Tokenization
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
# Tokenize the sequence
inputs = tokenizer(input_seq, return_tensors="pt", truncation=True, max_length=1024, padding='max_length')
# Run the model
with torch.no_grad():
logits = loaded_model(**inputs).logits
# Get predictions
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens
predictions = torch.argmax(logits, dim=2)
binding_site=[]
pos = 0
# Print the predicted labels for each token
for token, prediction in zip(tokens, predictions[0].numpy()):
if token not in ['<pad>', '<cls>', '<eos>']:
pos += 1
print((pos, token, id2label[prediction]))
if prediction == 1:
print((pos, token, id2label[prediction]))
binding_site.append([pos, token, id2label[prediction]])
return binding_site
# fine-tuning function
def train_function_no_sweeps(base_model_path): #, train_dataset, test_dataset):
# Set the LoRA config
config = {
"lora_alpha": 1, #try 0.5, 1, 2, ..., 16
"lora_dropout": 0.2,
"lr": 5.701568055793089e-04,
"lr_scheduler_type": "cosine",
"max_grad_norm": 0.5,
"num_train_epochs": 1, #3, jw 20240628
"per_device_train_batch_size": 12,
"r": 2,
"weight_decay": 0.2,
# Add other hyperparameters as needed
}
base_model = AutoModelForTokenClassification.from_pretrained(base_model_path, num_labels=len(id2label), id2label=id2label, label2id=label2id)
# Tokenization
tokenizer = AutoTokenizer.from_pretrained(base_model_path) #("facebook/esm2_t12_35M_UR50D")
train_tokenized = tokenizer(train_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)
test_tokenized = tokenizer(test_sequences, padding=True, truncation=True, max_length=max_sequence_length, return_tensors="pt", is_split_into_words=False)
train_dataset = Dataset.from_dict({k: v for k, v in train_tokenized.items()}).add_column("labels", train_labels)
test_dataset = Dataset.from_dict({k: v for k, v in test_tokenized.items()}).add_column("labels", test_labels)
# Convert the model into a PeftModel
peft_config = LoraConfig(
task_type=TaskType.TOKEN_CLS,
inference_mode=False,
r=config["r"],
lora_alpha=config["lora_alpha"],
target_modules=["query", "key", "value"], # also try "dense_h_to_4h" and "dense_4h_to_h"
lora_dropout=config["lora_dropout"],
bias="none" # or "all" or "lora_only"
)
base_model = get_peft_model(base_model, peft_config)
# Use the accelerator
base_model = accelerator.prepare(base_model)
train_dataset = accelerator.prepare(train_dataset)
test_dataset = accelerator.prepare(test_dataset)
model_name_base = base_model_path.split("/")[1]
timestamp = datetime.now().strftime('%Y-%m-%d_%H')
save_path = f"{model_name_base}-lora-binding-sites_{timestamp}"
# Training setup
training_args = TrainingArguments(
output_dir=save_path, #f"{model_name_base}-lora-binding-sites_{timestamp}",
learning_rate=config["lr"],
lr_scheduler_type=config["lr_scheduler_type"],
gradient_accumulation_steps=1,
max_grad_norm=config["max_grad_norm"],
per_device_train_batch_size=config["per_device_train_batch_size"],
per_device_eval_batch_size=config["per_device_train_batch_size"],
num_train_epochs=config["num_train_epochs"],
weight_decay=config["weight_decay"],
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="f1",
greater_is_better=True,
push_to_hub=True, #jw 20240701 False,
logging_dir=None,
logging_first_step=False,
logging_steps=200,
save_total_limit=7,
no_cuda=False,
seed=8893,
fp16=True,
#report_to='wandb'
report_to=None,
hub_token = HF_TOKEN, #jw 20240701
)
# Initialize Trainer
trainer = WeightedTrainer(
model=base_model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
tokenizer=tokenizer,
data_collator=DataCollatorForTokenClassification(tokenizer=tokenizer),
compute_metrics=compute_metrics,
)
# Train and Save Model
trainer.train()
return save_path
# Constants & Globals
HF_TOKEN = os.environ.get("HF_token")
print("HF_TOKEN:",HF_TOKEN)
MODEL_OPTIONS = [
"facebook/esm2_t6_8M_UR50D",
"facebook/esm2_t12_35M_UR50D",
"facebook/esm2_t33_650M_UR50D",
] # models users can choose from
PEFT_MODEL_OPTIONS = [
"wangjin2000/esm2_t6_8M-lora-binding-sites_2024-07-02_09-26-54",
"AmelieSchreiber/esm2_t12_35M_lora_binding_sites_v2_cp3",
] # finetuned models
# Load the data from pickle files (replace with your local paths)
with open("./datasets/train_sequences_chunked_by_family.pkl", "rb") as f:
train_sequences = pickle.load(f)
with open("./datasets/test_sequences_chunked_by_family.pkl", "rb") as f:
test_sequences = pickle.load(f)
with open("./datasets/train_labels_chunked_by_family.pkl", "rb") as f:
train_labels = pickle.load(f)
with open("./datasets/test_labels_chunked_by_family.pkl", "rb") as f:
test_labels = pickle.load(f)
max_sequence_length = 1000
# Directly truncate the entire list of labels
train_labels = truncate_labels(train_labels, max_sequence_length)
test_labels = truncate_labels(test_labels, max_sequence_length)
# Compute Class Weights
classes = [0, 1]
flat_train_labels = [label for sublist in train_labels for label in sublist]
class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=flat_train_labels)
accelerator = Accelerator()
class_weights = torch.tensor(class_weights, dtype=torch.float32).to(accelerator.device)
# Define labels and model
id2label = {0: "No binding site", 1: "Binding site"}
label2id = {v: k for k, v in id2label.items()}
'''
# debug result
dubug_result = saved_path #predictions #class_weights
'''
demo = gr.Blocks(title="DEMO FOR ESM2Bind")
with demo:
gr.Markdown("# DEMO FOR ESM2Bind")
#gr.Textbox(dubug_result)
with gr.Column():
gr.Markdown("## Select a base model and a corresponding PEFT finetune model")
with gr.Row():
with gr.Column(scale=5, variant="compact"):
base_model_name = gr.Dropdown(
choices=MODEL_OPTIONS,
value=MODEL_OPTIONS[0],
label="Base Model Name",
interactive = True,
)
PEFT_model_name = gr.Dropdown(
choices=PEFT_MODEL_OPTIONS,
value=PEFT_MODEL_OPTIONS[0],
label="PEFT Model Name",
interactive = True,
)
with gr.Column(scale=5, variant="compact"):
name = gr.Dropdown(
label="Choose a Sample Protein",
value="Default protein",
choices=["Default protein", "Antifreeze protein", "Plastic degradation protein", "AI Generated protein", "7-bladed propeller fold", "custom"]
)
gr.Markdown(
"## Predict binding site and Plot structure for selected protein sequence:"
)
with gr.Row():
with gr.Column(variant="compact", scale = 8):
input_seq = gr.Textbox(
lines=1,
max_lines=12,
label="Protein sequency to be predicted:",
value="MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT",
placeholder="Paste your protein sequence here...",
interactive = True,
)
text_pos = gr.Textbox(
lines=1,
max_lines=12,
label="Sequency Position:",
placeholder=
"012345678911234567892123456789312345678941234567895123456789612345678971234567898123456789912345678901234567891123456789",
interactive=False,
)
with gr.Column(variant="compact", scale = 2):
predict_btn = gr.Button(
value="Predict binding site",
interactive=True,
variant="primary",
)
plot_struc_btn = gr.Button(value = "Plot ESMFold Predicted Structure ", variant="primary")
with gr.Row():
with gr.Column(variant="compact", scale = 5):
output_text = gr.Textbox(
lines=1,
max_lines=12,
label="Output",
placeholder="Output",
)
with gr.Column(variant="compact", scale = 5):
finetune_button = gr.Button(
value="Finetune Pre-trained Model",
interactive=True,
variant="primary",
)
with gr.Row():
output_viewer = gr.HTML()
output_file = gr.File(
label="Download as Text File",
file_count="single",
type="filepath",
interactive=False,
)
# select protein sample
name.change(fn=suggest, inputs=name, outputs=input_seq)
# "Predict binding site" actions
predict_btn.click(
fn = predict_bind,
inputs=[base_model_name,PEFT_model_name,input_seq],
outputs = [output_text],
)
# "Finetune Pre-trained Model" actions
finetune_button.click(
fn = train_function_no_sweeps,
inputs=[base_model_name],
outputs = [output_text],
)
# plot protein structure
plot_struc_btn.click(fn=plot_struc, inputs=input_seq, outputs=[output_file, output_viewer])
demo.launch()