|
|
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
def from_homogeneous(points, eps: float = 1e-8): |
|
"""Remove the homogeneous dimension of N-dimensional points. |
|
Args: |
|
points: torch.Tensor or numpy.ndarray with size (..., N+1). |
|
Returns: |
|
A torch.Tensor or numpy ndarray with size (..., N). |
|
""" |
|
return points[..., :-1] / (points[..., -1:] + eps) |
|
|
|
|
|
def to_homogeneous(points): |
|
"""Convert N-dimensional points to homogeneous coordinates. |
|
Args: |
|
points: torch.Tensor or numpy.ndarray with size (..., N). |
|
Returns: |
|
A torch.Tensor or numpy.ndarray with size (..., N+1). |
|
""" |
|
if isinstance(points, torch.Tensor): |
|
pad = points.new_ones(points.shape[:-1] + (1,)) |
|
return torch.cat([points, pad], dim=-1) |
|
elif isinstance(points, np.ndarray): |
|
pad = np.ones((points.shape[:-1] + (1,)), dtype=points.dtype) |
|
return np.concatenate([points, pad], axis=-1) |
|
else: |
|
raise ValueError |
|
|
|
|
|
@torch.jit.script |
|
def undistort_points(pts, dist): |
|
dist = dist.unsqueeze(-2) |
|
ndist = dist.shape[-1] |
|
undist = pts |
|
valid = torch.ones(pts.shape[:-1], device=pts.device, dtype=torch.bool) |
|
if ndist > 0: |
|
k1, k2 = dist[..., :2].split(1, -1) |
|
r2 = torch.sum(pts**2, -1, keepdim=True) |
|
radial = k1 * r2 + k2 * r2**2 |
|
undist = undist + pts * radial |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
limited = ((k2 > 0) & ((9 * k1**2 - 20 * k2) > 0)) | ((k2 <= 0) & (k1 > 0)) |
|
limit = torch.abs( |
|
torch.where( |
|
k2 > 0, |
|
(torch.sqrt(9 * k1**2 - 20 * k2) - 3 * k1) / (10 * k2), |
|
1 / (3 * k1), |
|
) |
|
) |
|
valid = valid & torch.squeeze(~limited | (r2 < limit), -1) |
|
|
|
if ndist > 2: |
|
p12 = dist[..., 2:] |
|
p21 = p12.flip(-1) |
|
uv = torch.prod(pts, -1, keepdim=True) |
|
undist = undist + 2 * p12 * uv + p21 * (r2 + 2 * pts**2) |
|
|
|
return undist, valid |
|
|