|
import gradio as gr |
|
import cv2 |
|
import gradio as gr |
|
import torch |
|
from torchvision import transforms |
|
import requests |
|
from PIL import Image |
|
from demo import Demo,read_input_image_test,show_result,vis_image_feature |
|
from osm.tiling import TileManager |
|
from osm.viz import Colormap, plot_nodes |
|
from utils.viz_2d import plot_images |
|
import numpy as np |
|
from utils.viz_2d import features_to_RGB |
|
from utils.viz_localization import ( |
|
likelihood_overlay, |
|
plot_dense_rotations, |
|
add_circle_inset, |
|
) |
|
from osm.viz import GeoPlotter |
|
import matplotlib.pyplot as plt |
|
import random |
|
from geopy.distance import geodesic |
|
|
|
experiment_or_path = "weight/last-step-checkpointing.ckpt" |
|
|
|
image_path = 'images/00000.jpg' |
|
|
|
|
|
|
|
model = Demo(experiment_or_path=experiment_or_path, num_rotations=128, device='cpu') |
|
|
|
def demo_localize(image,long,lat,tile_size_meters): |
|
|
|
|
|
prior_latlon=(lat,long) |
|
image, camera, gravity, proj, bbox, true_prior_latlon = read_input_image_test( |
|
image, |
|
prior_latlon=prior_latlon, |
|
tile_size_meters=tile_size_meters, |
|
) |
|
tiler = TileManager.from_bbox(projection=proj, bbox=bbox, ppm=1, tile_size=tile_size_meters) |
|
|
|
canvas = tiler.query(bbox) |
|
uv, yaw, prob, neural_map, image_rectified, data_, pred = model.localize( |
|
image, camera, canvas) |
|
prior_latlon_pred = proj.unproject(canvas.to_xy(uv)) |
|
|
|
map_viz = Colormap.apply(canvas.raster) |
|
map_vis_image_result = map_viz * 255 |
|
map_vis_image_result =show_result(map_vis_image_result.astype(np.uint8), uv, yaw) |
|
|
|
|
|
|
|
|
|
|
|
uab_feature_rgb = vis_image_feature(pred['features_image'][0].cpu().numpy()) |
|
map_viz = cv2.resize(map_viz, (prob.numpy().shape[0], prob.numpy().shape[1])) |
|
overlay = likelihood_overlay(prob.numpy().max(-1), map_viz.mean(-1, keepdims=True)) |
|
(neural_map_rgb,) = features_to_RGB(neural_map.numpy()) |
|
fig=plot_images([image, map_vis_image_result / 255, overlay, uab_feature_rgb, neural_map_rgb], |
|
titles=["UAV image", "map","likelihood","UAV feature","map feature"]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bbox_latlon = proj.unproject(canvas.bbox) |
|
plot2 = GeoPlotter(zoom=16.5) |
|
plot2.raster(map_viz, bbox_latlon, opacity=0.5) |
|
plot2.raster(likelihood_overlay(prob.numpy().max(-1)), proj.unproject(bbox)) |
|
plot2.points(prior_latlon[:2], "red", name="location prior", size=10) |
|
plot2.points(proj.unproject(canvas.to_xy(uv)), "black", name="argmax", size=10) |
|
plot2.bbox(bbox_latlon, "blue", name="map tile") |
|
|
|
return fig,plot2.fig,str(prior_latlon_pred) |
|
|
|
|
|
title = "MapLocNet" |
|
|
|
description = "UAV Vision-based Geo-Localization Using Vectorized Maps" |
|
|
|
|
|
outputs = gr.Plot() |
|
interface = gr.Interface(fn=demo_localize, |
|
inputs=["image", |
|
gr.Number(label="Prior location-longitude)"), |
|
gr.Number(label="Prior location-longitude)"), |
|
gr.Radio([64, 128, 256], label="Search radius (meters)", info="vectorized map size"), |
|
|
|
|
|
], |
|
outputs=["plot","plot","text"], |
|
title=title, |
|
description=description, |
|
examples=[['images/00000.jpg',-122.435941445631,37.75704325989902,128]]) |
|
interface.launch(share=True) |