import streamlit as st import torch import torch.nn as nn from transformers import AutoTokenizer, AutoModelForCausalLM import requests from PIL import Image from io import BytesIO # Define the template TEMPLATE = """[INST] Evaluate if the given text is harmful i.e. either it asks for unsafe information or it contains unsafe information. {prompt} Answer: [/INST] """ # Load the model and tokenizer @st.cache_resource def load_model(): model_name = "walledai/walledguard-c" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) return tokenizer, model tokenizer, model = load_model() # Function to load image from URL @st.cache_data def load_image_from_url(url): response = requests.get(url) img = Image.open(BytesIO(response.content)) return img # Streamlit app st.title("Text Safety Evaluator") # User input user_input = st.text_area("Enter the text you want to evaluate:", height=100) if st.button("Evaluate"): if user_input: # Prepare input input_ids = tokenizer.encode(TEMPLATE.format(prompt=user_input), return_tensors="pt") # Generate output output = model.generate(input_ids=input_ids, max_new_tokens=20, pad_token_id=0) # Decode output prompt_len = input_ids.shape[-1] output_decoded = tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True) # Determine prediction prediction = 'unsafe' if 'unsafe' in output_decoded.lower() else 'safe' # Display results st.subheader("Evaluation Result:") st.write(f"The text is evaluated as: **{prediction.upper()}**") else: st.warning("Please enter some text to evaluate.") # Add information about Walled Guard Advanced st.markdown("---") st.write("For a more performant version, check out Walled Guard Advanced.") st.write("Connect with us at admin@walled.ai for more information.") # Add logo at the bottom center col1, col2, col3 = st.columns([1,2,1]) with col2: logo_url = "https://github.com/walledai/walledeval/assets/32847115/d8b1d14f-7071-448b-8997-2eeba4c2c8f6" logo = load_image_from_url(logo_url) st.image(logo, use_column_width=True)