wahab5763 commited on
Commit
81ba234
ยท
verified ยท
1 Parent(s): 4d8bd8a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -31
app.py CHANGED
@@ -242,7 +242,7 @@ def save_vector_database():
242
  }
243
  db_data = pickle.dumps(vector_db)
244
  st.download_button(
245
- label="Download Vector Database",
246
  data=db_data,
247
  file_name="vector_database.pkl",
248
  mime="application/octet-stream"
@@ -284,7 +284,7 @@ def process_candidate_emails(query, similarity_threshold):
284
  faiss.normalize_L2(query_embedding)
285
 
286
  # Debug: Verify the type of vector_store
287
- st.write(f"Vector Store Type: {type(st.session_state.vector_store)}")
288
 
289
  # Perform search
290
  distances, indices = st.session_state.vector_store.search(query_embedding, TOP_K)
@@ -294,7 +294,7 @@ def process_candidate_emails(query, similarity_threshold):
294
  if sim >= similarity_threshold:
295
  candidates.append((st.session_state.data_chunks[idx], sim))
296
  if not candidates:
297
- st.write("โš ๏ธ No matching embeddings found for your query with the selected threshold.")
298
  return
299
 
300
  # Build the context string by concatenating all matching email texts using HTML breaks.
@@ -364,11 +364,8 @@ def call_llm_api(query):
364
  def handle_user_query():
365
  st.header("๐Ÿ’ฌ Let's Chat with Your Emails")
366
 
367
- # Checkbox to show/hide the threshold slider
368
- show_threshold = st.checkbox("Adjust Similarity Threshold")
369
-
370
- # Slider, shown only if 'show_threshold' is True
371
- if show_threshold:
372
  similarity_threshold = st.slider(
373
  "Select Similarity Threshold",
374
  min_value=0.0,
@@ -378,37 +375,34 @@ def handle_user_query():
378
  help="Adjust the similarity threshold to control the relevance of retrieved emails. Higher values yield more relevant results.",
379
  key='similarity_threshold'
380
  )
381
- else:
382
- # Set a default threshold if the slider is not shown
383
- if 'similarity_threshold' not in st.session_state:
384
- st.session_state.similarity_threshold = 0.3
385
- similarity_threshold = st.session_state.similarity_threshold
386
 
387
- # Callback function to process the query
388
  def query_callback():
389
  query = st.session_state.query_input
390
  if not query.strip():
 
391
  return
392
  process_candidate_emails(query, similarity_threshold)
393
  if st.session_state.raw_candidates:
394
- st.subheader("๐Ÿ”Ž Matching Email Chunks:")
395
- for candidate, sim in st.session_state.raw_candidates:
396
- # Get a snippet (first 150 characters) of the body instead of full body content.
397
- body = candidate.get('body', 'No Content')
398
- snippet = (body[:150] + "...") if len(body) > 150 else body
399
- st.markdown(
400
- f"**From:** {candidate.get('sender','Unknown')} <br>"
401
- f"**To:** {candidate.get('to','Unknown')} <br>"
402
- f"**Date:** {candidate.get('date','Unknown')} <br>"
403
- f"**Subject:** {candidate.get('subject','No Subject')} <br>"
404
- f"**Body Snippet:** {snippet} <br>"
405
- f"**Similarity:** {sim:.4f}",
406
- unsafe_allow_html=True
407
- )
408
  # Then send the query along with the context to the LLM API.
409
  call_llm_api(query)
 
 
410
 
411
- # Text input with callback on change (when Enter is pressed)
412
  st.text_input("Enter your query:", key="query_input", on_change=query_callback)
413
 
414
  # ===============================
@@ -430,7 +424,7 @@ def main():
430
  # Check file size; if larger than 200MB, show a warning and then continue.
431
  file_size_mb = uploaded_db.size / (1024 * 1024)
432
  if file_size_mb > 200:
433
- st.warning("The uploaded file is larger than 200MB. It may take longer to load, but processing will continue.")
434
  try:
435
  vector_db = pickle.load(uploaded_db)
436
  st.session_state.vector_store = vector_db.get("vector_store")
@@ -473,7 +467,7 @@ def main():
473
  if st.session_state.data_chunks:
474
  embed_emails(st.session_state.data_chunks)
475
  if st.session_state.vector_store is not None:
476
- with st.expander("๐Ÿ’พ Download Data", expanded=True):
477
  save_vector_database()
478
 
479
  if st.session_state.vector_store is not None:
 
242
  }
243
  db_data = pickle.dumps(vector_db)
244
  st.download_button(
245
+ label="๐Ÿ’พ Download Vector Database",
246
  data=db_data,
247
  file_name="vector_database.pkl",
248
  mime="application/octet-stream"
 
284
  faiss.normalize_L2(query_embedding)
285
 
286
  # Debug: Verify the type of vector_store
287
+ # st.write(f"Vector Store Type: {type(st.session_state.vector_store)}")
288
 
289
  # Perform search
290
  distances, indices = st.session_state.vector_store.search(query_embedding, TOP_K)
 
294
  if sim >= similarity_threshold:
295
  candidates.append((st.session_state.data_chunks[idx], sim))
296
  if not candidates:
297
+ st.warning("โš ๏ธ No matching embeddings found for your query with the selected threshold.")
298
  return
299
 
300
  # Build the context string by concatenating all matching email texts using HTML breaks.
 
364
  def handle_user_query():
365
  st.header("๐Ÿ’ฌ Let's Chat with Your Emails")
366
 
367
+ # Expander for threshold selection
368
+ with st.expander("๐Ÿ”ง Adjust Similarity Threshold", expanded=False):
 
 
 
369
  similarity_threshold = st.slider(
370
  "Select Similarity Threshold",
371
  min_value=0.0,
 
375
  help="Adjust the similarity threshold to control the relevance of retrieved emails. Higher values yield more relevant results.",
376
  key='similarity_threshold'
377
  )
 
 
 
 
 
378
 
379
+ # Text input with callback on change (when Enter is pressed)
380
  def query_callback():
381
  query = st.session_state.query_input
382
  if not query.strip():
383
+ st.warning("โš ๏ธ Please enter a valid query.")
384
  return
385
  process_candidate_emails(query, similarity_threshold)
386
  if st.session_state.raw_candidates:
387
+ with st.expander("๐Ÿ”Ž Matching Email Chunks:", expanded=False):
388
+ for candidate, sim in st.session_state.raw_candidates:
389
+ # Get a snippet (first 150 characters) of the body instead of full body content.
390
+ body = candidate.get('body', 'No Content')
391
+ snippet = (body[:150] + "...") if len(body) > 150 else body
392
+ st.markdown(
393
+ f"**From:** {candidate.get('sender','Unknown')} <br>"
394
+ f"**To:** {candidate.get('to','Unknown')} <br>"
395
+ f"**Date:** {candidate.get('date','Unknown')} <br>"
396
+ f"**Subject:** {candidate.get('subject','No Subject')} <br>"
397
+ f"**Body Snippet:** {snippet} <br>"
398
+ f"**Similarity:** {sim:.4f}",
399
+ unsafe_allow_html=True
400
+ )
401
  # Then send the query along with the context to the LLM API.
402
  call_llm_api(query)
403
+ # Clear the input field after processing
404
+ st.session_state.query_input = ""
405
 
 
406
  st.text_input("Enter your query:", key="query_input", on_change=query_callback)
407
 
408
  # ===============================
 
424
  # Check file size; if larger than 200MB, show a warning and then continue.
425
  file_size_mb = uploaded_db.size / (1024 * 1024)
426
  if file_size_mb > 200:
427
+ st.warning("โš ๏ธ The uploaded file is larger than 200MB. It may take longer to load, but processing will continue.")
428
  try:
429
  vector_db = pickle.load(uploaded_db)
430
  st.session_state.vector_store = vector_db.get("vector_store")
 
467
  if st.session_state.data_chunks:
468
  embed_emails(st.session_state.data_chunks)
469
  if st.session_state.vector_store is not None:
470
+ with st.expander("๐Ÿ’พ Download Data", expanded=False):
471
  save_vector_database()
472
 
473
  if st.session_state.vector_store is not None: