|
import torch |
|
import detectron2.data.transforms as T |
|
from detectron2.checkpoint import DetectionCheckpointer |
|
from detectron2.data import ( |
|
MetadataCatalog, |
|
) |
|
from detectron2.modeling import build_model |
|
|
|
|
|
__all__ = [ |
|
"DefaultPredictor", |
|
] |
|
|
|
|
|
class DefaultPredictor: |
|
""" |
|
Create a simple end-to-end predictor with the given config that runs on |
|
single device for a single input image. |
|
Compared to using the model directly, this class does the following additions: |
|
1. Load checkpoint from `cfg.MODEL.WEIGHTS`. |
|
2. Always take BGR image as the input and apply conversion defined by `cfg.INPUT.FORMAT`. |
|
3. Apply resizing defined by `cfg.INPUT.{MIN,MAX}_SIZE_TEST`. |
|
4. Take one input image and produce a single output, instead of a batch. |
|
This is meant for simple demo purposes, so it does the above steps automatically. |
|
This is not meant for benchmarks or running complicated inference logic. |
|
If you'd like to do anything more complicated, please refer to its source code as |
|
examples to build and use the model manually. |
|
Attributes: |
|
metadata (Metadata): the metadata of the underlying dataset, obtained from |
|
cfg.DATASETS.TEST. |
|
Examples: |
|
:: |
|
pred = DefaultPredictor(cfg) |
|
inputs = cv2.imread("input.jpg") |
|
outputs = pred(inputs) |
|
""" |
|
|
|
def __init__(self, cfg): |
|
self.cfg = cfg.clone() |
|
self.model = build_model(self.cfg) |
|
self.model.eval() |
|
if len(cfg.DATASETS.TEST): |
|
self.metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0]) |
|
|
|
checkpointer = DetectionCheckpointer(self.model) |
|
checkpointer.load(cfg.MODEL.WEIGHTS) |
|
|
|
self.aug = T.ResizeShortestEdge( |
|
[cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST |
|
) |
|
|
|
self.input_format = cfg.INPUT.FORMAT |
|
assert self.input_format in ["RGB", "BGR"], self.input_format |
|
|
|
def __call__(self, original_image, task): |
|
""" |
|
Args: |
|
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). |
|
Returns: |
|
predictions (dict): |
|
the output of the model for one image only. |
|
See :doc:`/tutorials/models` for details about the format. |
|
""" |
|
with torch.no_grad(): |
|
|
|
if self.input_format == "RGB": |
|
|
|
original_image = original_image[:, :, ::-1] |
|
height, width = original_image.shape[:2] |
|
image = self.aug.get_transform(original_image).apply_image(original_image) |
|
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) |
|
|
|
task = f"The task is {task}" |
|
|
|
inputs = {"image": image, "height": height, "width": width, "task": task} |
|
predictions = self.model([inputs])[0] |
|
return predictions |