Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from qwen_vl_utils import process_vision_info
|
5 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
6 |
+
import time
|
7 |
+
|
8 |
+
|
9 |
+
@st.cache_resource
|
10 |
+
def load_model():
|
11 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype=torch.float32).eval()
|
12 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
13 |
+
return model, processor
|
14 |
+
|
15 |
+
model, processor = load_model()
|
16 |
+
|
17 |
+
|
18 |
+
st.title("Image Query App")
|
19 |
+
|
20 |
+
|
21 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
22 |
+
|
23 |
+
|
24 |
+
st.sidebar.title("Suggested Questions")
|
25 |
+
predefined_questions = [
|
26 |
+
"What is the main object in this image?",
|
27 |
+
"Describe the scene in the image.",
|
28 |
+
"Are there any people in the image?",
|
29 |
+
"What is the background of the image?"
|
30 |
+
]
|
31 |
+
selected_question = st.sidebar.radio("Choose a question", predefined_questions)
|
32 |
+
|
33 |
+
|
34 |
+
question = st.sidebar.text_input("Or ask your own question here:")
|
35 |
+
|
36 |
+
|
37 |
+
submit_button = st.sidebar.button("Submit")
|
38 |
+
|
39 |
+
|
40 |
+
response = ""
|
41 |
+
|
42 |
+
if uploaded_file is not None:
|
43 |
+
image = Image.open(uploaded_file)
|
44 |
+
|
45 |
+
|
46 |
+
original_size = image.size
|
47 |
+
st.write(f"Original image dimensions: {original_size}")
|
48 |
+
|
49 |
+
|
50 |
+
max_size = (700, 700)
|
51 |
+
if image.size[0] > 1000 or image.size[1] > 1000:
|
52 |
+
image.thumbnail(max_size)
|
53 |
+
resized_size = image.size
|
54 |
+
st.write(f"Image resized to: {resized_size}")
|
55 |
+
else:
|
56 |
+
st.write("Image size is within acceptable limits.")
|
57 |
+
|
58 |
+
if not question:
|
59 |
+
question = selected_question
|
60 |
+
|
61 |
+
|
62 |
+
if submit_button:
|
63 |
+
st.sidebar.markdown("<h3 style='color:blue;'>Fetching the answer might take 2-3 minutes depending on the question, hold tight while we process your request!</h3>", unsafe_allow_html=True)
|
64 |
+
start_time = time.time() # Start the timer
|
65 |
+
|
66 |
+
if question:
|
67 |
+
|
68 |
+
messages = [
|
69 |
+
{
|
70 |
+
"role": "user",
|
71 |
+
"content": [
|
72 |
+
{"type": "image", "image": image},
|
73 |
+
{"type": "text", "text": question},
|
74 |
+
],
|
75 |
+
}
|
76 |
+
]
|
77 |
+
|
78 |
+
|
79 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
80 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
81 |
+
inputs = processor(
|
82 |
+
text=[text],
|
83 |
+
images=image_inputs,
|
84 |
+
videos=video_inputs,
|
85 |
+
padding=True,
|
86 |
+
return_tensors="pt",
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
with st.spinner('Fetching the answer...'):
|
91 |
+
with torch.no_grad():
|
92 |
+
new_generated_ids = model.generate(**inputs, max_new_tokens=180)
|
93 |
+
|
94 |
+
|
95 |
+
new_generated_ids_trimmed = [
|
96 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, new_generated_ids)
|
97 |
+
]
|
98 |
+
response = processor.batch_decode(
|
99 |
+
new_generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
100 |
+
)[0]
|
101 |
+
|
102 |
+
else:
|
103 |
+
st.warning("Please enter a question.")
|
104 |
+
|
105 |
+
elapsed_time = time.time() - start_time # Calculate elapsed time
|
106 |
+
|
107 |
+
|
108 |
+
if response:
|
109 |
+
st.markdown(f"<h4 style='color:green;'>Response:</h4><p style='font-size:18px;'>{response}</p>", unsafe_allow_html=True)
|
110 |
+
st.markdown(f"<p style='color:gray;'>Time taken to fetch the answer: {elapsed_time:.2f} seconds</p>", unsafe_allow_html=True)
|
111 |
+
|
112 |
+
|
113 |
+
if uploaded_file is not None:
|
114 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|