Spaces:
Sleeping
Sleeping
File size: 7,664 Bytes
4275cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.distributions import Categorical
import models.pos_encoding as pos_encoding
class Text2Motion_Transformer(nn.Module):
def __init__(self,
num_vq=1024,
embed_dim=512,
clip_dim=512,
block_size=16,
num_layers=2,
n_head=8,
drop_out_rate=0.1,
fc_rate=4):
super().__init__()
self.trans_base = CrossCondTransBase(num_vq, embed_dim, clip_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
self.trans_head = CrossCondTransHead(num_vq, embed_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
self.block_size = block_size
self.num_vq = num_vq
def get_block_size(self):
return self.block_size
def forward(self, idxs, clip_feature):
feat = self.trans_base(idxs, clip_feature)
logits = self.trans_head(feat)
return logits
def sample(self, clip_feature, if_categorial=False):
for k in range(self.block_size):
if k == 0:
x = []
else:
x = xs
logits = self.forward(x, clip_feature)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
if if_categorial:
dist = Categorical(probs)
idx = dist.sample()
if idx == self.num_vq:
break
idx = idx.unsqueeze(-1)
else:
_, idx = torch.topk(probs, k=1, dim=-1)
if idx[0] == self.num_vq:
break
# append to the sequence and continue
if k == 0:
xs = idx
else:
xs = torch.cat((xs, idx), dim=1)
if k == self.block_size - 1:
return xs[:, :-1]
return xs
class CausalCrossConditionalSelfAttention(nn.Module):
def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1):
super().__init__()
assert embed_dim % 8 == 0
# key, query, value projections for all heads
self.key = nn.Linear(embed_dim, embed_dim)
self.query = nn.Linear(embed_dim, embed_dim)
self.value = nn.Linear(embed_dim, embed_dim)
self.attn_drop = nn.Dropout(drop_out_rate)
self.resid_drop = nn.Dropout(drop_out_rate)
self.proj = nn.Linear(embed_dim, embed_dim)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer("mask", torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
self.n_head = n_head
def forward(self, x):
B, T, C = x.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_drop(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
# output projection
y = self.resid_drop(self.proj(y))
return y
class Block(nn.Module):
def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1, fc_rate=4):
super().__init__()
self.ln1 = nn.LayerNorm(embed_dim)
self.ln2 = nn.LayerNorm(embed_dim)
self.attn = CausalCrossConditionalSelfAttention(embed_dim, block_size, n_head, drop_out_rate)
self.mlp = nn.Sequential(
nn.Linear(embed_dim, fc_rate * embed_dim),
nn.GELU(),
nn.Linear(fc_rate * embed_dim, embed_dim),
nn.Dropout(drop_out_rate),
)
def forward(self, x):
x = x + self.attn(self.ln1(x))
x = x + self.mlp(self.ln2(x))
return x
class CrossCondTransBase(nn.Module):
def __init__(self,
num_vq=1024,
embed_dim=512,
clip_dim=512,
block_size=16,
num_layers=2,
n_head=8,
drop_out_rate=0.1,
fc_rate=4):
super().__init__()
self.tok_emb = nn.Embedding(num_vq + 2, embed_dim)
self.cond_emb = nn.Linear(clip_dim, embed_dim)
self.pos_embedding = nn.Embedding(block_size, embed_dim)
self.drop = nn.Dropout(drop_out_rate)
# transformer block
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)
self.block_size = block_size
self.apply(self._init_weights)
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, idx, clip_feature):
if len(idx) == 0:
token_embeddings = self.cond_emb(clip_feature).unsqueeze(1)
else:
b, t = idx.size()
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
# forward the Trans model
token_embeddings = self.tok_emb(idx)
token_embeddings = torch.cat([self.cond_emb(clip_feature).unsqueeze(1), token_embeddings], dim=1)
x = self.pos_embed(token_embeddings)
x = self.blocks(x)
return x
class CrossCondTransHead(nn.Module):
def __init__(self,
num_vq=1024,
embed_dim=512,
block_size=16,
num_layers=2,
n_head=8,
drop_out_rate=0.1,
fc_rate=4):
super().__init__()
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
self.ln_f = nn.LayerNorm(embed_dim)
self.head = nn.Linear(embed_dim, num_vq + 1, bias=False)
self.block_size = block_size
self.apply(self._init_weights)
def get_block_size(self):
return self.block_size
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, x):
x = self.blocks(x)
x = self.ln_f(x)
logits = self.head(x)
return logits
|