import spaces import os import gc from functools import partial import gradio as gr import torch from speechbrain.inference.interfaces import Pretrained, foreign_class from transformers import T5Tokenizer, T5ForConditionalGeneration import librosa import whisper_timestamped as whisper from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.backends.cuda.matmul.allow_tf32 = True def clean_up_memory(): gc.collect() torch.cuda.empty_cache() @spaces.GPU(duration=15) def recap_sentence(string): inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device) outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0) recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True) return recap_result @spaces.GPU(duration=30) def return_prediction_w2v2(mic=None, file=None, device=device): if mic is not None: waveform, sr = librosa.load(mic, sr=16000) waveform = waveform[:60*sr] w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device) elif file is not None: waveform, sr = librosa.load(file, sr=16000) waveform = waveform[:60*sr] w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device) else: return "You must either provide a mic recording or a file" recap_result = recap_sentence(w2v2_result[0]) for i, letter in enumerate(recap_result): if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] clean_up_memory() return recap_result @spaces.GPU(duration=30) def return_prediction_whisper_mic(mic=None, device=device): if mic is not None: waveform, sr = librosa.load(mic, sr=16000) waveform = waveform[:30*sr] whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device) else: return "You must provide a mic recording" recap_result = recap_sentence(whisper_result[0]) for i, letter in enumerate(recap_result): if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] clean_up_memory() return recap_result @spaces.GPU(duration=60) def return_prediction_whisper_file(file=None, device=device): whisper_result = [] if file is not None: waveform, sr = librosa.load(file, sr=16000) waveform = waveform[:3600*sr] whisper_result = whisper_classifier.classify_file_whisper_mkd_streaming(waveform, device) else: yield "You must provide a file" recap_result = "" prev_segment = "" prev_segment_len = 0 segment_counter = 0 for segment in whisper_result: segment_counter += 1 if prev_segment == "": recap_segment = recap_sentence(segment[0]) else: prev_segment_len = len(prev_segment.split()) recap_segment = recap_sentence(prev_segment + " " + segment[0]) recap_segment = recap_segment.split() recap_segment = recap_segment[prev_segment_len:] recap_segment = " ".join(recap_segment) prev_segment = segment[0] recap_result += recap_segment + " " for i, letter in enumerate(recap_result): if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower(): recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:] yield recap_result return_prediction_whisper_mic_with_device = partial(return_prediction_whisper_mic, device=device) return_prediction_whisper_file_with_device = partial(return_prediction_whisper_file, device=device) return_prediction_w2v2_with_device = partial(return_prediction_w2v2, device=device) # Load the ASR models whisper_classifier = foreign_class(source="Macedonian-ASR/whisper-large-v3-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR") whisper_classifier = whisper_classifier.to(device) whisper_classifier.eval() w2v2_classifier = foreign_class(source="Macedonian-ASR/wav2vec2-aed-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR") w2v2_classifier = w2v2_classifier.to(device) w2v2_classifier.eval() # Load the T5 tokenizer and model recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian" recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name) recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16) recap_model.to(device) recap_model.eval() # Interface definitions mic_transcribe_whisper = gr.Interface( fn=return_prediction_whisper_mic_with_device, inputs=gr.Audio(sources="microphone", type="filepath"), outputs=gr.Textbox(), allow_flagging="never", live=False, ) file_transcribe_whisper = gr.Interface( fn=return_prediction_whisper_file_with_device, inputs=gr.Audio(sources="upload", type="filepath"), outputs=gr.Textbox(), allow_flagging="never", live=True ) mic_transcribe_w2v2 = gr.Interface( fn=return_prediction_w2v2_with_device, inputs=gr.Audio(sources="microphone", type="filepath"), outputs=gr.Textbox(), allow_flagging="never", live=False, ) file_transcribe_w2v2 = gr.Interface( fn=return_prediction_w2v2_with_device, inputs=gr.Audio(sources="upload", type="filepath"), outputs=gr.Textbox(), allow_flagging="never", live=False ) project_description = ''' Bookie logo ## Автори: 1. **Дејан Порјазовски** 2. **Илина Јакимовска** 3. **Ордан Чукалиев** 4. **Никола Стиков** Оваа колаборација е дел од активностите на **Центарот за напредни интердисциплинарни истражувања ([ЦеНИИс](https://ukim.edu.mk/en/centri/centar-za-napredni-interdisciplinarni-istrazhuvanja-ceniis))** при УКИМ. ## Во тренирањето на овој модел се употребени податоци од: 1. Дигитален архив за етнолошки и антрополошки ресурси ([ДАЕАР](https://iea.pmf.ukim.edu.mk/tabs/view/61f236ed7d95176b747c20566ddbda1a)) при Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ. 2. Аудио верзија на меѓународното списание [„ЕтноАнтропоЗум"](https://etno.pmf.ukim.mk/index.php/eaz/issue/archive) на Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ. 3. Аудио подкастот [„Обични луѓе"](https://obicniluge.mk/episodes/) на Илина Јакимовска 4. Научните видеа од серијалот [„Наука за деца"](http://naukazadeca.mk), фондација [КАНТАРОТ](https://qantarot.substack.com/) 5. Македонска верзија на [Mozilla Common Voice](https://commonvoice.mozilla.org/en/datasets) (верзија 18.0) ## Како да придонесете за подобрување на македонските модели за препознавање на говор? На следниот [линк](https://drive.google.com/file/d/1YdZJz9o1X8AMc6J4MNPnVZjASyIXnvoZ/view?usp=sharing) ќе најдете инструкции за тоа како да донирате македонски говор преку платформата Mozilla Common Voice. ''' # Custom CSS css = """ .gradio-container { background-color: #f0f0f0; } .custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a { font-size: 15px !important; font-family: Arial, sans-serif !important; } .gradio-container { background-color: #f3f3f3 !important; } """ transcriber_app = gr.Blocks(css=css, delete_cache=(60, 120)) with transcriber_app: state = gr.State() gr.Markdown(project_description, elem_classes="custom-markdown") gr.TabbedInterface( [mic_transcribe_whisper, file_transcribe_whisper, mic_transcribe_w2v2, file_transcribe_w2v2], ["Буки-Whisper микрофон", "Буки-Whisper датотека", "Буки-Wav2vec2 микрофон", "Буки-Wav2vec2 датотека"], ) state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED")) transcriber_app.unload(return_prediction_whisper_mic) transcriber_app.unload(return_prediction_whisper_file) transcriber_app.unload(return_prediction_w2v2) if __name__ == "__main__": transcriber_app.queue() transcriber_app.launch(share=True)