Spaces:
Sleeping
Sleeping
vitorcalvi
commited on
Commit
·
fc286f6
1
Parent(s):
d983672
pre-launch
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LICENSE +21 -0
- README.md +27 -6
- __pycache__/audio_OK.cpython-310.pyc +0 -0
- __pycache__/fixapp.cpython-310.pyc +0 -0
- __pycache__/mpstest.cpython-310.pyc +0 -0
- __pycache__/tinnitus.cpython-310.pyc +0 -0
- __pycache__/ui_components.cpython-310.pyc +0 -0
- app.py +64 -0
- app/__init__.py +0 -0
- app/__pycache__/__init__.cpython-310.pyc +0 -0
- app/__pycache__/__init__.cpython-312.pyc +0 -0
- app/__pycache__/__init__.cpython-38.pyc +0 -0
- app/__pycache__/app_utils.cpython-310.pyc +0 -0
- app/__pycache__/app_utils.cpython-312.pyc +0 -0
- app/__pycache__/app_utils.cpython-38.pyc +0 -0
- app/__pycache__/authors.cpython-310.pyc +0 -0
- app/__pycache__/authors.cpython-312.pyc +0 -0
- app/__pycache__/authors.cpython-38.pyc +0 -0
- app/__pycache__/config.cpython-310.pyc +0 -0
- app/__pycache__/config.cpython-312.pyc +0 -0
- app/__pycache__/config.cpython-38.pyc +0 -0
- app/__pycache__/description.cpython-310.pyc +0 -0
- app/__pycache__/description.cpython-312.pyc +0 -0
- app/__pycache__/description.cpython-38.pyc +0 -0
- app/__pycache__/face_utils.cpython-310.pyc +0 -0
- app/__pycache__/face_utils.cpython-312.pyc +0 -0
- app/__pycache__/face_utils.cpython-38.pyc +0 -0
- app/__pycache__/model.cpython-310.pyc +0 -0
- app/__pycache__/model.cpython-312.pyc +0 -0
- app/__pycache__/model.cpython-38.pyc +0 -0
- app/__pycache__/model_architectures.cpython-310.pyc +0 -0
- app/__pycache__/model_architectures.cpython-312.pyc +0 -0
- app/__pycache__/model_architectures.cpython-38.pyc +0 -0
- app/__pycache__/plot.cpython-310.pyc +0 -0
- app/__pycache__/plot.cpython-312.pyc +0 -0
- app/__pycache__/plot.cpython-38.pyc +0 -0
- app/app_utils.py +321 -0
- app/au_processing.py +64 -0
- app/authors.py +34 -0
- app/config.py +49 -0
- app/description.py +46 -0
- app/face_utils.py +68 -0
- app/image_processing.py +49 -0
- app/model.py +64 -0
- app/model_architectures.py +150 -0
- app/plot.py +29 -0
- app/sleep_quality_processing.py +94 -0
- app/video_processing.py +132 -0
- app_gpuzero.py +64 -0
- assets/.DS_Store +0 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Elena Ryumina
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,13 +1,34 @@
|
|
1 |
---
|
2 |
-
title: MMESA
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
|
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Multi-Modal for Emotion and Sentiment Analysis (MMESA)
|
3 |
+
emoji: 😀😲😐😥🥴😱😡
|
4 |
+
colorFrom: blue
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.24.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
+
short_description: A tool to detect Stress, Anxiety and Depression
|
12 |
---
|
13 |
|
14 |
+
## Technologies
|
15 |
+
|
16 |
+
This project utilizes various Python scripts for different aspects of analysis and recognition:
|
17 |
+
|
18 |
+
- `blink_detection.py`: Detects and analyzes blinking patterns.
|
19 |
+
- `body_movement_analysis.py`: Analyzes body movements.
|
20 |
+
- `emotion_analysis.py`: Analyzes emotional states.
|
21 |
+
- `face_expressions.py`: Recognizes facial expressions.
|
22 |
+
- `FACS_analysis_sad.py`: Performs Facial Action Coding System analysis for sadness.
|
23 |
+
- `gaze_estimation.py`: Estimates gaze direction.
|
24 |
+
- `head_posture_detection.py`: Detects head posture.
|
25 |
+
- `heart_rate_variability.py`: Analyzes heart rate variability.
|
26 |
+
- `posture_analysis.py`: Analyzes posture.
|
27 |
+
- `roberta_chatbot.py`: Chatbot using the RoBERTa model.
|
28 |
+
- `sentiment_analysis.py`: Performs sentiment analysis.
|
29 |
+
- `skin_analysis.py`: Analyzes skin conditions.
|
30 |
+
- `sleep_quality.py`: Evaluates sleep quality.
|
31 |
+
- `speech_emotion_recognition.py`: Recognizes emotions from speech.
|
32 |
+
- `speech_stress_analysis.py`: Analyzes stress levels from speech.
|
33 |
+
|
34 |
+
These scripts combine to provide comprehensive analysis capabilities for various aspects of human behavior and physiology.
|
__pycache__/audio_OK.cpython-310.pyc
ADDED
Binary file (2.29 kB). View file
|
|
__pycache__/fixapp.cpython-310.pyc
ADDED
Binary file (2.37 kB). View file
|
|
__pycache__/mpstest.cpython-310.pyc
ADDED
Binary file (1.04 kB). View file
|
|
__pycache__/tinnitus.cpython-310.pyc
ADDED
Binary file (3.24 kB). View file
|
|
__pycache__/ui_components.cpython-310.pyc
ADDED
Binary file (3.82 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tabs.heart_rate_variability import create_hrv_tab
|
3 |
+
from tabs.blink_detection import create_blink_tab
|
4 |
+
from tabs.gaze_estimation import create_gaze_estimation_tab
|
5 |
+
from tabs.speech_stress_analysis import create_voice_stress_tab
|
6 |
+
from tabs.head_posture_detection import create_head_posture_tab
|
7 |
+
from tabs.face_expressions import create_face_expressions_tab
|
8 |
+
from tabs.speech_emotion_recognition import create_emotion_recognition_tab
|
9 |
+
from tabs.sleep_quality import create_sleep_quality_tab
|
10 |
+
from tabs.sentiment_analysis import create_sentiment_tab
|
11 |
+
from tabs.emotion_analysis import create_emotion_tab
|
12 |
+
from tabs.body_movement_analysis import create_body_movement_tab
|
13 |
+
from tabs.posture_analysis import create_posture_analysis_tab
|
14 |
+
from tabs.skin_analysis import create_skin_conductance_tab
|
15 |
+
from tabs.FACS_analysis_sad import create_facs_analysis_sad_tab
|
16 |
+
from tabs.roberta_chatbot import create_roberta_chatbot_tab
|
17 |
+
|
18 |
+
# Import the UI components
|
19 |
+
from ui_components import CUSTOM_CSS, HEADER_HTML, DISCLAIMER_HTML
|
20 |
+
|
21 |
+
TAB_STRUCTURE = [
|
22 |
+
("Visual Analysis", [
|
23 |
+
("Emotional Face Expressions", create_face_expressions_tab),
|
24 |
+
("FACS for Stress, Anxiety, Depression", create_facs_analysis_sad_tab),
|
25 |
+
("Gaze Estimation", create_gaze_estimation_tab),
|
26 |
+
("Head Posture", create_head_posture_tab),
|
27 |
+
("Blink Rate", create_blink_tab),
|
28 |
+
("Sleep Quality", create_sleep_quality_tab),
|
29 |
+
("Heart Rate Variability", create_hrv_tab),
|
30 |
+
("Body Movement", create_body_movement_tab),
|
31 |
+
("Posture", create_posture_analysis_tab),
|
32 |
+
("Skin", create_skin_conductance_tab)
|
33 |
+
]),
|
34 |
+
("Speech Analysis", [
|
35 |
+
("Speech Stress", create_voice_stress_tab),
|
36 |
+
("Speech Emotion", create_emotion_recognition_tab)
|
37 |
+
]),
|
38 |
+
("Text Analysis", [
|
39 |
+
("Sentiment", create_sentiment_tab),
|
40 |
+
("Emotion", create_emotion_tab),
|
41 |
+
("Roberta Mental Health Chatbot", create_roberta_chatbot_tab)
|
42 |
+
]),
|
43 |
+
("Brain Analysis (coming soon)", [
|
44 |
+
])
|
45 |
+
]
|
46 |
+
|
47 |
+
def create_demo():
|
48 |
+
with gr.Blocks(css=CUSTOM_CSS) as demo:
|
49 |
+
gr.Markdown(HEADER_HTML)
|
50 |
+
with gr.Tabs(elem_classes=["main-tab"]):
|
51 |
+
for main_tab, sub_tabs in TAB_STRUCTURE:
|
52 |
+
with gr.Tab(main_tab):
|
53 |
+
with gr.Tabs():
|
54 |
+
for sub_tab, create_fn in sub_tabs:
|
55 |
+
with gr.Tab(sub_tab):
|
56 |
+
create_fn()
|
57 |
+
gr.HTML(DISCLAIMER_HTML)
|
58 |
+
return demo
|
59 |
+
|
60 |
+
# Create the demo instance
|
61 |
+
demo = create_demo()
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.queue(api_open=True).launch(share=False)
|
app/__init__.py
ADDED
File without changes
|
app/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (150 Bytes). View file
|
|
app/__pycache__/__init__.cpython-312.pyc
ADDED
Binary file (168 Bytes). View file
|
|
app/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (162 Bytes). View file
|
|
app/__pycache__/app_utils.cpython-310.pyc
ADDED
Binary file (8.47 kB). View file
|
|
app/__pycache__/app_utils.cpython-312.pyc
ADDED
Binary file (8.32 kB). View file
|
|
app/__pycache__/app_utils.cpython-38.pyc
ADDED
Binary file (4.24 kB). View file
|
|
app/__pycache__/authors.cpython-310.pyc
ADDED
Binary file (2.42 kB). View file
|
|
app/__pycache__/authors.cpython-312.pyc
ADDED
Binary file (2.44 kB). View file
|
|
app/__pycache__/authors.cpython-38.pyc
ADDED
Binary file (2.43 kB). View file
|
|
app/__pycache__/config.cpython-310.pyc
ADDED
Binary file (984 Bytes). View file
|
|
app/__pycache__/config.cpython-312.pyc
ADDED
Binary file (1.31 kB). View file
|
|
app/__pycache__/config.cpython-38.pyc
ADDED
Binary file (985 Bytes). View file
|
|
app/__pycache__/description.cpython-310.pyc
ADDED
Binary file (2.31 kB). View file
|
|
app/__pycache__/description.cpython-312.pyc
ADDED
Binary file (1.73 kB). View file
|
|
app/__pycache__/description.cpython-38.pyc
ADDED
Binary file (1.63 kB). View file
|
|
app/__pycache__/face_utils.cpython-310.pyc
ADDED
Binary file (2.21 kB). View file
|
|
app/__pycache__/face_utils.cpython-312.pyc
ADDED
Binary file (4.27 kB). View file
|
|
app/__pycache__/face_utils.cpython-38.pyc
ADDED
Binary file (2.22 kB). View file
|
|
app/__pycache__/model.cpython-310.pyc
ADDED
Binary file (2.77 kB). View file
|
|
app/__pycache__/model.cpython-312.pyc
ADDED
Binary file (4.17 kB). View file
|
|
app/__pycache__/model.cpython-38.pyc
ADDED
Binary file (2.7 kB). View file
|
|
app/__pycache__/model_architectures.cpython-310.pyc
ADDED
Binary file (5.25 kB). View file
|
|
app/__pycache__/model_architectures.cpython-312.pyc
ADDED
Binary file (9.69 kB). View file
|
|
app/__pycache__/model_architectures.cpython-38.pyc
ADDED
Binary file (5.25 kB). View file
|
|
app/__pycache__/plot.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
app/__pycache__/plot.cpython-312.pyc
ADDED
Binary file (1.6 kB). View file
|
|
app/__pycache__/plot.cpython-38.pyc
ADDED
Binary file (1.12 kB). View file
|
|
app/app_utils.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: app_utils.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin (modified by Assistant)
|
4 |
+
Description: This module contains utility functions for facial expression recognition application, including FACS Analysis for SAD.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
import mediapipe as mp
|
11 |
+
from PIL import Image
|
12 |
+
import cv2
|
13 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
|
16 |
+
# Importing necessary components for the Gradio app
|
17 |
+
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
|
18 |
+
from app.face_utils import get_box, display_info
|
19 |
+
from app.config import DICT_EMO, config_data
|
20 |
+
from app.plot import statistics_plot
|
21 |
+
|
22 |
+
mp_face_mesh = mp.solutions.face_mesh
|
23 |
+
|
24 |
+
def preprocess_image_and_predict(inp):
|
25 |
+
inp = np.array(inp)
|
26 |
+
|
27 |
+
if inp is None:
|
28 |
+
return None, None, None
|
29 |
+
|
30 |
+
try:
|
31 |
+
h, w = inp.shape[:2]
|
32 |
+
except Exception:
|
33 |
+
return None, None, None
|
34 |
+
|
35 |
+
with mp_face_mesh.FaceMesh(
|
36 |
+
max_num_faces=1,
|
37 |
+
refine_landmarks=False,
|
38 |
+
min_detection_confidence=0.5,
|
39 |
+
min_tracking_confidence=0.5,
|
40 |
+
) as face_mesh:
|
41 |
+
results = face_mesh.process(inp)
|
42 |
+
if results.multi_face_landmarks:
|
43 |
+
for fl in results.multi_face_landmarks:
|
44 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
45 |
+
cur_face = inp[startY:endY, startX:endX]
|
46 |
+
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
47 |
+
with torch.no_grad():
|
48 |
+
prediction = (
|
49 |
+
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
|
50 |
+
.detach()
|
51 |
+
.numpy()[0]
|
52 |
+
)
|
53 |
+
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
54 |
+
grayscale_cam = cam(input_tensor=cur_face_n)
|
55 |
+
grayscale_cam = grayscale_cam[0, :]
|
56 |
+
cur_face_hm = cv2.resize(cur_face,(224,224))
|
57 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
58 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
|
59 |
+
|
60 |
+
return cur_face, heatmap, confidences
|
61 |
+
|
62 |
+
def preprocess_frame_and_predict_aus(frame):
|
63 |
+
if len(frame.shape) == 2:
|
64 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
65 |
+
elif frame.shape[2] == 4:
|
66 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
|
67 |
+
|
68 |
+
with mp_face_mesh.FaceMesh(
|
69 |
+
max_num_faces=1,
|
70 |
+
refine_landmarks=False,
|
71 |
+
min_detection_confidence=0.5,
|
72 |
+
min_tracking_confidence=0.5
|
73 |
+
) as face_mesh:
|
74 |
+
results = face_mesh.process(frame)
|
75 |
+
|
76 |
+
if results.multi_face_landmarks:
|
77 |
+
h, w = frame.shape[:2]
|
78 |
+
for fl in results.multi_face_landmarks:
|
79 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
80 |
+
cur_face = frame[startY:endY, startX:endX]
|
81 |
+
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
82 |
+
|
83 |
+
with torch.no_grad():
|
84 |
+
features = pth_model_static(cur_face_n)
|
85 |
+
au_intensities = features_to_au_intensities(features)
|
86 |
+
|
87 |
+
grayscale_cam = cam(input_tensor=cur_face_n)
|
88 |
+
grayscale_cam = grayscale_cam[0, :]
|
89 |
+
cur_face_hm = cv2.resize(cur_face, (224, 224))
|
90 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
91 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
|
92 |
+
|
93 |
+
return cur_face, au_intensities, heatmap
|
94 |
+
|
95 |
+
return None, None, None
|
96 |
+
|
97 |
+
def features_to_au_intensities(features):
|
98 |
+
features_np = features.detach().cpu().numpy()[0]
|
99 |
+
au_intensities = (features_np - features_np.min()) / (features_np.max() - features_np.min())
|
100 |
+
return au_intensities[:24] # Assuming we want 24 AUs
|
101 |
+
|
102 |
+
def preprocess_video_and_predict(video):
|
103 |
+
cap = cv2.VideoCapture(video)
|
104 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
105 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
106 |
+
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
107 |
+
|
108 |
+
path_save_video_face = 'result_face.mp4'
|
109 |
+
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
110 |
+
|
111 |
+
path_save_video_hm = 'result_hm.mp4'
|
112 |
+
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
113 |
+
|
114 |
+
lstm_features = []
|
115 |
+
count_frame = 1
|
116 |
+
count_face = 0
|
117 |
+
probs = []
|
118 |
+
frames = []
|
119 |
+
au_intensities_list = []
|
120 |
+
last_output = None
|
121 |
+
last_heatmap = None
|
122 |
+
last_au_intensities = None
|
123 |
+
cur_face = None
|
124 |
+
|
125 |
+
with mp_face_mesh.FaceMesh(
|
126 |
+
max_num_faces=1,
|
127 |
+
refine_landmarks=False,
|
128 |
+
min_detection_confidence=0.5,
|
129 |
+
min_tracking_confidence=0.5) as face_mesh:
|
130 |
+
|
131 |
+
while cap.isOpened():
|
132 |
+
_, frame = cap.read()
|
133 |
+
if frame is None: break
|
134 |
+
|
135 |
+
frame_copy = frame.copy()
|
136 |
+
frame_copy.flags.writeable = False
|
137 |
+
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
138 |
+
results = face_mesh.process(frame_copy)
|
139 |
+
frame_copy.flags.writeable = True
|
140 |
+
|
141 |
+
if results.multi_face_landmarks:
|
142 |
+
for fl in results.multi_face_landmarks:
|
143 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
144 |
+
cur_face = frame_copy[startY:endY, startX: endX]
|
145 |
+
|
146 |
+
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
147 |
+
cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
148 |
+
with torch.no_grad():
|
149 |
+
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
|
150 |
+
au_intensities = features_to_au_intensities(pth_model_static(cur_face_copy))
|
151 |
+
|
152 |
+
grayscale_cam = cam(input_tensor=cur_face_copy)
|
153 |
+
grayscale_cam = grayscale_cam[0, :]
|
154 |
+
cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
|
155 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
156 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
|
157 |
+
last_heatmap = heatmap
|
158 |
+
last_au_intensities = au_intensities
|
159 |
+
|
160 |
+
if len(lstm_features) == 0:
|
161 |
+
lstm_features = [features]*10
|
162 |
+
else:
|
163 |
+
lstm_features = lstm_features[1:] + [features]
|
164 |
+
|
165 |
+
lstm_f = torch.from_numpy(np.vstack(lstm_features))
|
166 |
+
lstm_f = torch.unsqueeze(lstm_f, 0)
|
167 |
+
with torch.no_grad():
|
168 |
+
output = pth_model_dynamic(lstm_f).detach().numpy()
|
169 |
+
last_output = output
|
170 |
+
|
171 |
+
if count_face == 0:
|
172 |
+
count_face += 1
|
173 |
+
|
174 |
+
else:
|
175 |
+
if last_output is not None:
|
176 |
+
output = last_output
|
177 |
+
heatmap = last_heatmap
|
178 |
+
au_intensities = last_au_intensities
|
179 |
+
|
180 |
+
elif last_output is None:
|
181 |
+
output = np.empty((1, 7))
|
182 |
+
output[:] = np.nan
|
183 |
+
au_intensities = np.empty(24)
|
184 |
+
au_intensities[:] = np.nan
|
185 |
+
|
186 |
+
probs.append(output[0])
|
187 |
+
frames.append(count_frame)
|
188 |
+
au_intensities_list.append(au_intensities)
|
189 |
+
else:
|
190 |
+
if last_output is not None:
|
191 |
+
lstm_features = []
|
192 |
+
empty = np.empty((7))
|
193 |
+
empty[:] = np.nan
|
194 |
+
probs.append(empty)
|
195 |
+
frames.append(count_frame)
|
196 |
+
au_intensities_list.append(np.full(24, np.nan))
|
197 |
+
|
198 |
+
if cur_face is not None:
|
199 |
+
heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
|
200 |
+
|
201 |
+
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
|
202 |
+
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
|
203 |
+
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
|
204 |
+
vid_writer_face.write(cur_face)
|
205 |
+
vid_writer_hm.write(heatmap_f)
|
206 |
+
|
207 |
+
count_frame += 1
|
208 |
+
if count_face != 0:
|
209 |
+
count_face += 1
|
210 |
+
|
211 |
+
vid_writer_face.release()
|
212 |
+
vid_writer_hm.release()
|
213 |
+
|
214 |
+
stat = statistics_plot(frames, probs)
|
215 |
+
au_stat = au_statistics_plot(frames, au_intensities_list)
|
216 |
+
|
217 |
+
if not stat or not au_stat:
|
218 |
+
return None, None, None, None, None
|
219 |
+
|
220 |
+
return video, path_save_video_face, path_save_video_hm, stat, au_stat
|
221 |
+
|
222 |
+
def au_statistics_plot(frames, au_intensities_list):
|
223 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
224 |
+
au_intensities_array = np.array(au_intensities_list)
|
225 |
+
|
226 |
+
for i in range(au_intensities_array.shape[1]):
|
227 |
+
ax.plot(frames, au_intensities_array[:, i], label=f'AU{i+1}')
|
228 |
+
|
229 |
+
ax.set_xlabel('Frame')
|
230 |
+
ax.set_ylabel('AU Intensity')
|
231 |
+
ax.set_title('Action Unit Intensities Over Time')
|
232 |
+
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
|
233 |
+
plt.tight_layout()
|
234 |
+
return fig
|
235 |
+
|
236 |
+
def preprocess_video_and_predict_sleep_quality(video):
|
237 |
+
cap = cv2.VideoCapture(video)
|
238 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
239 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
240 |
+
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
241 |
+
|
242 |
+
path_save_video_original = 'result_original.mp4'
|
243 |
+
path_save_video_face = 'result_face.mp4'
|
244 |
+
path_save_video_sleep = 'result_sleep.mp4'
|
245 |
+
|
246 |
+
vid_writer_original = cv2.VideoWriter(path_save_video_original, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
247 |
+
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
248 |
+
vid_writer_sleep = cv2.VideoWriter(path_save_video_sleep, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
249 |
+
|
250 |
+
frames = []
|
251 |
+
sleep_quality_scores = []
|
252 |
+
eye_bags_images = []
|
253 |
+
|
254 |
+
with mp_face_mesh.FaceMesh(
|
255 |
+
max_num_faces=1,
|
256 |
+
refine_landmarks=False,
|
257 |
+
min_detection_confidence=0.5,
|
258 |
+
min_tracking_confidence=0.5) as face_mesh:
|
259 |
+
|
260 |
+
while cap.isOpened():
|
261 |
+
ret, frame = cap.read()
|
262 |
+
if not ret:
|
263 |
+
break
|
264 |
+
|
265 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
266 |
+
results = face_mesh.process(frame_rgb)
|
267 |
+
|
268 |
+
if results.multi_face_landmarks:
|
269 |
+
for fl in results.multi_face_landmarks:
|
270 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
271 |
+
cur_face = frame_rgb[startY:endY, startX:endX]
|
272 |
+
|
273 |
+
sleep_quality_score, eye_bags_image = analyze_sleep_quality(cur_face)
|
274 |
+
sleep_quality_scores.append(sleep_quality_score)
|
275 |
+
eye_bags_images.append(cv2.resize(eye_bags_image, (224, 224)))
|
276 |
+
|
277 |
+
sleep_quality_viz = create_sleep_quality_visualization(cur_face, sleep_quality_score)
|
278 |
+
|
279 |
+
cur_face = cv2.resize(cur_face, (224, 224))
|
280 |
+
|
281 |
+
vid_writer_face.write(cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR))
|
282 |
+
vid_writer_sleep.write(sleep_quality_viz)
|
283 |
+
|
284 |
+
vid_writer_original.write(frame)
|
285 |
+
frames.append(len(frames) + 1)
|
286 |
+
|
287 |
+
cap.release()
|
288 |
+
vid_writer_original.release()
|
289 |
+
vid_writer_face.release()
|
290 |
+
vid_writer_sleep.release()
|
291 |
+
|
292 |
+
sleep_stat = sleep_quality_statistics_plot(frames, sleep_quality_scores)
|
293 |
+
|
294 |
+
if eye_bags_images:
|
295 |
+
average_eye_bags_image = np.mean(np.array(eye_bags_images), axis=0).astype(np.uint8)
|
296 |
+
else:
|
297 |
+
average_eye_bags_image = np.zeros((224, 224, 3), dtype=np.uint8)
|
298 |
+
|
299 |
+
return (path_save_video_original, path_save_video_face, path_save_video_sleep,
|
300 |
+
average_eye_bags_image, sleep_stat)
|
301 |
+
|
302 |
+
def analyze_sleep_quality(face_image):
|
303 |
+
# Placeholder function - implement your sleep quality analysis here
|
304 |
+
sleep_quality_score = np.random.random()
|
305 |
+
eye_bags_image = cv2.resize(face_image, (224, 224))
|
306 |
+
return sleep_quality_score, eye_bags_image
|
307 |
+
|
308 |
+
def create_sleep_quality_visualization(face_image, sleep_quality_score):
|
309 |
+
viz = face_image.copy()
|
310 |
+
cv2.putText(viz, f"Sleep Quality: {sleep_quality_score:.2f}", (10, 30),
|
311 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
312 |
+
return cv2.cvtColor(viz, cv2.COLOR_RGB2BGR)
|
313 |
+
|
314 |
+
def sleep_quality_statistics_plot(frames, sleep_quality_scores):
|
315 |
+
# Placeholder function - implement your statistics plotting here
|
316 |
+
fig, ax = plt.subplots()
|
317 |
+
ax.plot(frames, sleep_quality_scores)
|
318 |
+
ax.set_xlabel('Frame')
|
319 |
+
ax.set_ylabel('Sleep Quality Score')
|
320 |
+
ax.set_title('Sleep Quality Over Time')
|
321 |
+
return fig
|
app/au_processing.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from app.model import pth_model_static, cam, pth_processing
|
7 |
+
from app.face_utils import get_box
|
8 |
+
import mediapipe as mp
|
9 |
+
|
10 |
+
mp_face_mesh = mp.solutions.face_mesh
|
11 |
+
|
12 |
+
def preprocess_frame_and_predict_aus(frame):
|
13 |
+
if len(frame.shape) == 2:
|
14 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
15 |
+
elif frame.shape[2] == 4:
|
16 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
|
17 |
+
|
18 |
+
with mp_face_mesh.FaceMesh(
|
19 |
+
max_num_faces=1,
|
20 |
+
refine_landmarks=False,
|
21 |
+
min_detection_confidence=0.5,
|
22 |
+
min_tracking_confidence=0.5
|
23 |
+
) as face_mesh:
|
24 |
+
results = face_mesh.process(frame)
|
25 |
+
|
26 |
+
if results.multi_face_landmarks:
|
27 |
+
h, w = frame.shape[:2]
|
28 |
+
for fl in results.multi_face_landmarks:
|
29 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
30 |
+
cur_face = frame[startY:endY, startX:endX]
|
31 |
+
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
32 |
+
|
33 |
+
with torch.no_grad():
|
34 |
+
features = pth_model_static(cur_face_n)
|
35 |
+
au_intensities = features_to_au_intensities(features)
|
36 |
+
|
37 |
+
grayscale_cam = cam(input_tensor=cur_face_n)
|
38 |
+
grayscale_cam = grayscale_cam[0, :]
|
39 |
+
cur_face_hm = cv2.resize(cur_face, (224, 224))
|
40 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
41 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
|
42 |
+
|
43 |
+
return cur_face, au_intensities, heatmap
|
44 |
+
|
45 |
+
return None, None, None
|
46 |
+
|
47 |
+
def features_to_au_intensities(features):
|
48 |
+
features_np = features.detach().cpu().numpy()[0]
|
49 |
+
au_intensities = (features_np - features_np.min()) / (features_np.max() - features_np.min())
|
50 |
+
return au_intensities[:24] # Assuming we want 24 AUs
|
51 |
+
|
52 |
+
def au_statistics_plot(frames, au_intensities_list):
|
53 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
54 |
+
au_intensities_array = np.array(au_intensities_list)
|
55 |
+
|
56 |
+
for i in range(au_intensities_array.shape[1]):
|
57 |
+
ax.plot(frames, au_intensities_array[:, i], label=f'AU{i+1}')
|
58 |
+
|
59 |
+
ax.set_xlabel('Frame')
|
60 |
+
ax.set_ylabel('AU Intensity')
|
61 |
+
ax.set_title('Action Unit Intensities Over Time')
|
62 |
+
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
|
63 |
+
plt.tight_layout()
|
64 |
+
return fig
|
app/authors.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: authors.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: About the authors.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
AUTHORS = """
|
10 |
+
Authors: [Elena Ryumina](https://github.com/ElenaRyumina), [Dmitry Ryumin](https://github.com/DmitryRyumin), [Denis Dresvyanskiy](https://www.uni-ulm.de/en/nt/staff/research-assistants/dresvyanskiy/), [Maxim Markitantov](https://hci.nw.ru/en/employees/10) and [Alexey Karpov](https://hci.nw.ru/en/employees/1)
|
11 |
+
|
12 |
+
Authorship contribution:
|
13 |
+
|
14 |
+
App developers: ``Elena Ryumina`` and ``Dmitry Ryumin``
|
15 |
+
|
16 |
+
Methodology developers: ``Elena Ryumina``, ``Denis Dresvyanskiy`` and ``Alexey Karpov``
|
17 |
+
|
18 |
+
Model developer: ``Elena Ryumina``
|
19 |
+
|
20 |
+
TensorFlow to PyTorch model converters: ``Maxim Markitantov`` and ``Elena Ryumina``
|
21 |
+
|
22 |
+
Citation
|
23 |
+
|
24 |
+
If you are using EMO-AffectNetModel in your research, please consider to cite research [paper](https://www.sciencedirect.com/science/article/pii/S0925231222012656). Here is an example of BibTeX entry:
|
25 |
+
|
26 |
+
<div class="highlight highlight-text-bibtex notranslate position-relative overflow-auto" dir="auto"><pre><span class="pl-k">@article</span>{<span class="pl-en">RYUMINA2022</span>,
|
27 |
+
<span class="pl-s">title</span> = <span class="pl-s"><span class="pl-pds">{</span>In Search of a Robust Facial Expressions Recognition Model: A Large-Scale Visual Cross-Corpus Study<span class="pl-pds">}</span></span>,
|
28 |
+
<span class="pl-s">author</span> = <span class="pl-s"><span class="pl-pds">{</span>Elena Ryumina and Denis Dresvyanskiy and Alexey Karpov<span class="pl-pds">}</span></span>,
|
29 |
+
<span class="pl-s">journal</span> = <span class="pl-s"><span class="pl-pds">{</span>Neurocomputing<span class="pl-pds">}</span></span>,
|
30 |
+
<span class="pl-s">year</span> = <span class="pl-s"><span class="pl-pds">{</span>2022<span class="pl-pds">}</span></span>,
|
31 |
+
<span class="pl-s">doi</span> = <span class="pl-s"><span class="pl-pds">{</span>10.1016/j.neucom.2022.10.013<span class="pl-pds">}</span></span>,
|
32 |
+
<span class="pl-s">url</span> = <span class="pl-s"><span class="pl-pds">{</span>https://www.sciencedirect.com/science/article/pii/S0925231222012656<span class="pl-pds">}</span></span>,
|
33 |
+
}</div>
|
34 |
+
"""
|
app/config.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: config.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: Configuration file.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import toml
|
9 |
+
from typing import Dict
|
10 |
+
from types import SimpleNamespace
|
11 |
+
|
12 |
+
|
13 |
+
def flatten_dict(prefix: str, d: Dict) -> Dict:
|
14 |
+
result = {}
|
15 |
+
|
16 |
+
for k, v in d.items():
|
17 |
+
if isinstance(v, dict):
|
18 |
+
result.update(flatten_dict(f"{prefix}{k}_", v))
|
19 |
+
else:
|
20 |
+
result[f"{prefix}{k}"] = v
|
21 |
+
|
22 |
+
return result
|
23 |
+
|
24 |
+
|
25 |
+
config = toml.load("config.toml")
|
26 |
+
|
27 |
+
config_data = flatten_dict("", config)
|
28 |
+
|
29 |
+
config_data = SimpleNamespace(**config_data)
|
30 |
+
|
31 |
+
DICT_EMO = {
|
32 |
+
0: "Neutral",
|
33 |
+
1: "Happiness",
|
34 |
+
2: "Sadness",
|
35 |
+
3: "Surprise",
|
36 |
+
4: "Fear",
|
37 |
+
5: "Disgust",
|
38 |
+
6: "Anger",
|
39 |
+
}
|
40 |
+
|
41 |
+
COLORS = {
|
42 |
+
0: 'blue',
|
43 |
+
1: 'orange',
|
44 |
+
2: 'green',
|
45 |
+
3: 'red',
|
46 |
+
4: 'purple',
|
47 |
+
5: 'brown',
|
48 |
+
6: 'pink'
|
49 |
+
}
|
app/description.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: description.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: Project description for the Gradio app.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
# Importing necessary components for the Gradio app
|
9 |
+
from app.config import config_data
|
10 |
+
|
11 |
+
DESCRIPTION_STATIC = f"""\
|
12 |
+
# Static Facial Expression Recognition
|
13 |
+
<div class="app-flex-container">
|
14 |
+
<img src="https://img.shields.io/badge/version-v{config_data.APP_VERSION}-rc0" alt="Version">
|
15 |
+
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition"><img src="https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FElenaRyumina%2FFacial_Expression_Recognition&countColor=%23263759&style=flat" /></a>
|
16 |
+
<a href="https://paperswithcode.com/paper/in-search-of-a-robust-facial-expressions"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/in-search-of-a-robust-facial-expressions/facial-expression-recognition-on-affectnet" /></a>
|
17 |
+
</div>
|
18 |
+
"""
|
19 |
+
|
20 |
+
DESCRIPTION_DYNAMIC = f"""\
|
21 |
+
# Dynamic Facial Expression Recognition
|
22 |
+
<div class="app-flex-container">
|
23 |
+
<img src="https://img.shields.io/badge/version-v{config_data.APP_VERSION}-rc0" alt="Version">
|
24 |
+
<a href="https://paperswithcode.com/paper/in-search-of-a-robust-facial-expressions"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/in-search-of-a-robust-facial-expressions/facial-expression-recognition-on-affectnet" /></a>
|
25 |
+
</div>
|
26 |
+
"""
|
27 |
+
|
28 |
+
DESCRIPTION_SLEEP_QUALITY = """
|
29 |
+
# Sleep Quality Analysis
|
30 |
+
|
31 |
+
This tab analyzes sleep quality based on facial features, focusing on skin tone and eye bags.
|
32 |
+
|
33 |
+
## How to use:
|
34 |
+
1. Upload a video of a person's face.
|
35 |
+
2. Click 'Submit' to process the video.
|
36 |
+
3. View the results, including:
|
37 |
+
- Original video
|
38 |
+
- Processed face video
|
39 |
+
- Sleep quality analysis video
|
40 |
+
- Eye bags detection image
|
41 |
+
- Sleep quality statistics over time
|
42 |
+
|
43 |
+
The analysis provides insights into potential sleep issues based on visual cues.
|
44 |
+
|
45 |
+
Note: This analysis is for informational purposes only and should not be considered a medical diagnosis. Always consult with a healthcare professional for sleep-related concerns.
|
46 |
+
"""
|
app/face_utils.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: face_utils.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module contains utility functions related to facial landmarks and image processing.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import math
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
|
13 |
+
def norm_coordinates(normalized_x, normalized_y, image_width, image_height):
|
14 |
+
x_px = min(math.floor(normalized_x * image_width), image_width - 1)
|
15 |
+
y_px = min(math.floor(normalized_y * image_height), image_height - 1)
|
16 |
+
return x_px, y_px
|
17 |
+
|
18 |
+
|
19 |
+
def get_box(fl, w, h):
|
20 |
+
idx_to_coors = {}
|
21 |
+
for idx, landmark in enumerate(fl.landmark):
|
22 |
+
landmark_px = norm_coordinates(landmark.x, landmark.y, w, h)
|
23 |
+
if landmark_px:
|
24 |
+
idx_to_coors[idx] = landmark_px
|
25 |
+
|
26 |
+
x_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 0])
|
27 |
+
y_min = np.min(np.asarray(list(idx_to_coors.values()))[:, 1])
|
28 |
+
endX = np.max(np.asarray(list(idx_to_coors.values()))[:, 0])
|
29 |
+
endY = np.max(np.asarray(list(idx_to_coors.values()))[:, 1])
|
30 |
+
|
31 |
+
(startX, startY) = (max(0, x_min), max(0, y_min))
|
32 |
+
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
33 |
+
|
34 |
+
return startX, startY, endX, endY
|
35 |
+
|
36 |
+
def display_info(img, text, margin=1.0, box_scale=1.0):
|
37 |
+
img_copy = img.copy()
|
38 |
+
img_h, img_w, _ = img_copy.shape
|
39 |
+
line_width = int(min(img_h, img_w) * 0.001)
|
40 |
+
thickness = max(int(line_width / 3), 1)
|
41 |
+
|
42 |
+
font_face = cv2.FONT_HERSHEY_SIMPLEX
|
43 |
+
font_color = (0, 0, 0)
|
44 |
+
font_scale = thickness / 1.5
|
45 |
+
|
46 |
+
t_w, t_h = cv2.getTextSize(text, font_face, font_scale, None)[0]
|
47 |
+
|
48 |
+
margin_n = int(t_h * margin)
|
49 |
+
sub_img = img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
50 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale): img_w - margin_n]
|
51 |
+
|
52 |
+
white_rect = np.ones(sub_img.shape, dtype=np.uint8) * 255
|
53 |
+
|
54 |
+
img_copy[0 + margin_n: 0 + margin_n + t_h + int(2 * t_h * box_scale),
|
55 |
+
img_w - t_w - margin_n - int(2 * t_h * box_scale):img_w - margin_n] = cv2.addWeighted(sub_img, 0.5, white_rect, .5, 1.0)
|
56 |
+
|
57 |
+
cv2.putText(img=img_copy,
|
58 |
+
text=text,
|
59 |
+
org=(img_w - t_w - margin_n - int(2 * t_h * box_scale) // 2,
|
60 |
+
0 + margin_n + t_h + int(2 * t_h * box_scale) // 2),
|
61 |
+
fontFace=font_face,
|
62 |
+
fontScale=font_scale,
|
63 |
+
color=font_color,
|
64 |
+
thickness=thickness,
|
65 |
+
lineType=cv2.LINE_AA,
|
66 |
+
bottomLeftOrigin=False)
|
67 |
+
|
68 |
+
return img_copy
|
app/image_processing.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from app.model import pth_model_static, cam, pth_processing
|
6 |
+
from app.face_utils import get_box
|
7 |
+
from app.config import DICT_EMO
|
8 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
9 |
+
import mediapipe as mp
|
10 |
+
|
11 |
+
mp_face_mesh = mp.solutions.face_mesh
|
12 |
+
|
13 |
+
def preprocess_image_and_predict(inp):
|
14 |
+
inp = np.array(inp)
|
15 |
+
|
16 |
+
if inp is None:
|
17 |
+
return None, None, None
|
18 |
+
|
19 |
+
try:
|
20 |
+
h, w = inp.shape[:2]
|
21 |
+
except Exception:
|
22 |
+
return None, None, None
|
23 |
+
|
24 |
+
with mp_face_mesh.FaceMesh(
|
25 |
+
max_num_faces=1,
|
26 |
+
refine_landmarks=False,
|
27 |
+
min_detection_confidence=0.5,
|
28 |
+
min_tracking_confidence=0.5,
|
29 |
+
) as face_mesh:
|
30 |
+
results = face_mesh.process(inp)
|
31 |
+
if results.multi_face_landmarks:
|
32 |
+
for fl in results.multi_face_landmarks:
|
33 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
34 |
+
cur_face = inp[startY:endY, startX:endX]
|
35 |
+
cur_face_n = pth_processing(Image.fromarray(cur_face))
|
36 |
+
with torch.no_grad():
|
37 |
+
prediction = (
|
38 |
+
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
|
39 |
+
.detach()
|
40 |
+
.numpy()[0]
|
41 |
+
)
|
42 |
+
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
|
43 |
+
grayscale_cam = cam(input_tensor=cur_face_n)
|
44 |
+
grayscale_cam = grayscale_cam[0, :]
|
45 |
+
cur_face_hm = cv2.resize(cur_face,(224,224))
|
46 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
47 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
|
48 |
+
|
49 |
+
return cur_face, heatmap, confidences
|
app/model.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: model.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module provides functions for loading and processing a pre-trained deep learning model
|
5 |
+
for facial expression recognition.
|
6 |
+
License: MIT License
|
7 |
+
"""
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import requests
|
11 |
+
from PIL import Image
|
12 |
+
from torchvision import transforms
|
13 |
+
from pytorch_grad_cam import GradCAM
|
14 |
+
|
15 |
+
# Importing necessary components for the Gradio app
|
16 |
+
from app.config import config_data
|
17 |
+
from app.model_architectures import ResNet50, LSTMPyTorch
|
18 |
+
|
19 |
+
|
20 |
+
def load_model(model_url, model_path):
|
21 |
+
try:
|
22 |
+
with requests.get(model_url, stream=True) as response:
|
23 |
+
with open(model_path, "wb") as file:
|
24 |
+
for chunk in response.iter_content(chunk_size=8192):
|
25 |
+
file.write(chunk)
|
26 |
+
return model_path
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error loading model: {e}")
|
29 |
+
return None
|
30 |
+
|
31 |
+
path_static = load_model(config_data.model_static_url, config_data.model_static_path)
|
32 |
+
pth_model_static = ResNet50(7, channels=3)
|
33 |
+
pth_model_static.load_state_dict(torch.load(path_static))
|
34 |
+
pth_model_static.eval()
|
35 |
+
|
36 |
+
path_dynamic = load_model(config_data.model_dynamic_url, config_data.model_dynamic_path)
|
37 |
+
pth_model_dynamic = LSTMPyTorch()
|
38 |
+
pth_model_dynamic.load_state_dict(torch.load(path_dynamic))
|
39 |
+
pth_model_dynamic.eval()
|
40 |
+
|
41 |
+
target_layers = [pth_model_static.layer4]
|
42 |
+
cam = GradCAM(model=pth_model_static, target_layers=target_layers)
|
43 |
+
|
44 |
+
def pth_processing(fp):
|
45 |
+
class PreprocessInput(torch.nn.Module):
|
46 |
+
def init(self):
|
47 |
+
super(PreprocessInput, self).init()
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
x = x.to(torch.float32)
|
51 |
+
x = torch.flip(x, dims=(0,))
|
52 |
+
x[0, :, :] -= 91.4953
|
53 |
+
x[1, :, :] -= 103.8827
|
54 |
+
x[2, :, :] -= 131.0912
|
55 |
+
return x
|
56 |
+
|
57 |
+
def get_img_torch(img, target_size=(224, 224)):
|
58 |
+
transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()])
|
59 |
+
img = img.resize(target_size, Image.Resampling.NEAREST)
|
60 |
+
img = transform(img)
|
61 |
+
img = torch.unsqueeze(img, 0)
|
62 |
+
return img
|
63 |
+
|
64 |
+
return get_img_torch(fp)
|
app/model_architectures.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: model.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: This module provides model architectures.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import math
|
12 |
+
|
13 |
+
class Bottleneck(nn.Module):
|
14 |
+
expansion = 4
|
15 |
+
def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):
|
16 |
+
super(Bottleneck, self).__init__()
|
17 |
+
|
18 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, padding=0, bias=False)
|
19 |
+
self.batch_norm1 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
|
20 |
+
|
21 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same', bias=False)
|
22 |
+
self.batch_norm2 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.99)
|
23 |
+
|
24 |
+
self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0, bias=False)
|
25 |
+
self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion, eps=0.001, momentum=0.99)
|
26 |
+
|
27 |
+
self.i_downsample = i_downsample
|
28 |
+
self.stride = stride
|
29 |
+
self.relu = nn.ReLU()
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
identity = x.clone()
|
33 |
+
x = self.relu(self.batch_norm1(self.conv1(x)))
|
34 |
+
|
35 |
+
x = self.relu(self.batch_norm2(self.conv2(x)))
|
36 |
+
|
37 |
+
x = self.conv3(x)
|
38 |
+
x = self.batch_norm3(x)
|
39 |
+
|
40 |
+
#downsample if needed
|
41 |
+
if self.i_downsample is not None:
|
42 |
+
identity = self.i_downsample(identity)
|
43 |
+
#add identity
|
44 |
+
x+=identity
|
45 |
+
x=self.relu(x)
|
46 |
+
|
47 |
+
return x
|
48 |
+
|
49 |
+
class Conv2dSame(torch.nn.Conv2d):
|
50 |
+
|
51 |
+
def calc_same_pad(self, i: int, k: int, s: int, d: int) -> int:
|
52 |
+
return max((math.ceil(i / s) - 1) * s + (k - 1) * d + 1 - i, 0)
|
53 |
+
|
54 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
55 |
+
ih, iw = x.size()[-2:]
|
56 |
+
|
57 |
+
pad_h = self.calc_same_pad(i=ih, k=self.kernel_size[0], s=self.stride[0], d=self.dilation[0])
|
58 |
+
pad_w = self.calc_same_pad(i=iw, k=self.kernel_size[1], s=self.stride[1], d=self.dilation[1])
|
59 |
+
|
60 |
+
if pad_h > 0 or pad_w > 0:
|
61 |
+
x = F.pad(
|
62 |
+
x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
|
63 |
+
)
|
64 |
+
return F.conv2d(
|
65 |
+
x,
|
66 |
+
self.weight,
|
67 |
+
self.bias,
|
68 |
+
self.stride,
|
69 |
+
self.padding,
|
70 |
+
self.dilation,
|
71 |
+
self.groups,
|
72 |
+
)
|
73 |
+
|
74 |
+
class ResNet(nn.Module):
|
75 |
+
def __init__(self, ResBlock, layer_list, num_classes, num_channels=3):
|
76 |
+
super(ResNet, self).__init__()
|
77 |
+
self.in_channels = 64
|
78 |
+
|
79 |
+
self.conv_layer_s2_same = Conv2dSame(num_channels, 64, 7, stride=2, groups=1, bias=False)
|
80 |
+
self.batch_norm1 = nn.BatchNorm2d(64, eps=0.001, momentum=0.99)
|
81 |
+
self.relu = nn.ReLU()
|
82 |
+
self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2)
|
83 |
+
|
84 |
+
self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64, stride=1)
|
85 |
+
self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2)
|
86 |
+
self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2)
|
87 |
+
self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2)
|
88 |
+
|
89 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
|
90 |
+
self.fc1 = nn.Linear(512*ResBlock.expansion, 512)
|
91 |
+
self.relu1 = nn.ReLU()
|
92 |
+
self.fc2 = nn.Linear(512, num_classes)
|
93 |
+
|
94 |
+
def extract_features(self, x):
|
95 |
+
x = self.relu(self.batch_norm1(self.conv_layer_s2_same(x)))
|
96 |
+
x = self.max_pool(x)
|
97 |
+
# print(x.shape)
|
98 |
+
x = self.layer1(x)
|
99 |
+
x = self.layer2(x)
|
100 |
+
x = self.layer3(x)
|
101 |
+
x = self.layer4(x)
|
102 |
+
|
103 |
+
x = self.avgpool(x)
|
104 |
+
x = x.reshape(x.shape[0], -1)
|
105 |
+
x = self.fc1(x)
|
106 |
+
return x
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = self.extract_features(x)
|
110 |
+
x = self.relu1(x)
|
111 |
+
x = self.fc2(x)
|
112 |
+
return x
|
113 |
+
|
114 |
+
def _make_layer(self, ResBlock, blocks, planes, stride=1):
|
115 |
+
ii_downsample = None
|
116 |
+
layers = []
|
117 |
+
|
118 |
+
if stride != 1 or self.in_channels != planes*ResBlock.expansion:
|
119 |
+
ii_downsample = nn.Sequential(
|
120 |
+
nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride, bias=False, padding=0),
|
121 |
+
nn.BatchNorm2d(planes*ResBlock.expansion, eps=0.001, momentum=0.99)
|
122 |
+
)
|
123 |
+
|
124 |
+
layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride))
|
125 |
+
self.in_channels = planes*ResBlock.expansion
|
126 |
+
|
127 |
+
for i in range(blocks-1):
|
128 |
+
layers.append(ResBlock(self.in_channels, planes))
|
129 |
+
|
130 |
+
return nn.Sequential(*layers)
|
131 |
+
|
132 |
+
def ResNet50(num_classes, channels=3):
|
133 |
+
return ResNet(Bottleneck, [3,4,6,3], num_classes, channels)
|
134 |
+
|
135 |
+
|
136 |
+
class LSTMPyTorch(nn.Module):
|
137 |
+
def __init__(self):
|
138 |
+
super(LSTMPyTorch, self).__init__()
|
139 |
+
|
140 |
+
self.lstm1 = nn.LSTM(input_size=512, hidden_size=512, batch_first=True, bidirectional=False)
|
141 |
+
self.lstm2 = nn.LSTM(input_size=512, hidden_size=256, batch_first=True, bidirectional=False)
|
142 |
+
self.fc = nn.Linear(256, 7)
|
143 |
+
self.softmax = nn.Softmax(dim=1)
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
x, _ = self.lstm1(x)
|
147 |
+
x, _ = self.lstm2(x)
|
148 |
+
x = self.fc(x[:, -1, :])
|
149 |
+
x = self.softmax(x)
|
150 |
+
return x
|
app/plot.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: config.py
|
3 |
+
Author: Elena Ryumina and Dmitry Ryumin
|
4 |
+
Description: Plotting statistical information.
|
5 |
+
License: MIT License
|
6 |
+
"""
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Importing necessary components for the Gradio app
|
11 |
+
from app.config import DICT_EMO, COLORS
|
12 |
+
|
13 |
+
|
14 |
+
def statistics_plot(frames, probs):
|
15 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
16 |
+
fig.subplots_adjust(left=0.07, bottom=0.14, right=0.98, top=0.8, wspace=0, hspace=0)
|
17 |
+
# Установка параметров left, bottom, right, top, чтобы выделить место для легенды и названий осей
|
18 |
+
probs = np.array(probs)
|
19 |
+
for i in range(7):
|
20 |
+
try:
|
21 |
+
ax.plot(frames, probs[:, i], label=DICT_EMO[i], c=COLORS[i])
|
22 |
+
except Exception:
|
23 |
+
return None
|
24 |
+
|
25 |
+
ax.legend(loc='upper center', bbox_to_anchor=(0.47, 1.2), ncol=7, fontsize=12)
|
26 |
+
ax.set_xlabel('Frames', fontsize=12) # Добавляем подпись к оси X
|
27 |
+
ax.set_ylabel('Probability', fontsize=12) # Добавляем подпись к оси Y
|
28 |
+
ax.grid(True)
|
29 |
+
return plt
|
app/sleep_quality_processing.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import mediapipe as mp
|
5 |
+
from app.face_utils import get_box
|
6 |
+
|
7 |
+
mp_face_mesh = mp.solutions.face_mesh
|
8 |
+
|
9 |
+
def preprocess_video_and_predict_sleep_quality(video):
|
10 |
+
cap = cv2.VideoCapture(video)
|
11 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
12 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
13 |
+
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
14 |
+
|
15 |
+
path_save_video_original = 'result_original.mp4'
|
16 |
+
path_save_video_face = 'result_face.mp4'
|
17 |
+
path_save_video_sleep = 'result_sleep.mp4'
|
18 |
+
|
19 |
+
vid_writer_original = cv2.VideoWriter(path_save_video_original, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
20 |
+
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
21 |
+
vid_writer_sleep = cv2.VideoWriter(path_save_video_sleep, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
22 |
+
|
23 |
+
frames = []
|
24 |
+
sleep_quality_scores = []
|
25 |
+
eye_bags_images = []
|
26 |
+
|
27 |
+
with mp_face_mesh.FaceMesh(
|
28 |
+
max_num_faces=1,
|
29 |
+
refine_landmarks=False,
|
30 |
+
min_detection_confidence=0.5,
|
31 |
+
min_tracking_confidence=0.5) as face_mesh:
|
32 |
+
|
33 |
+
while cap.isOpened():
|
34 |
+
ret, frame = cap.read()
|
35 |
+
if not ret:
|
36 |
+
break
|
37 |
+
|
38 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
39 |
+
results = face_mesh.process(frame_rgb)
|
40 |
+
|
41 |
+
if results.multi_face_landmarks:
|
42 |
+
for fl in results.multi_face_landmarks:
|
43 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
44 |
+
cur_face = frame_rgb[startY:endY, startX:endX]
|
45 |
+
|
46 |
+
sleep_quality_score, eye_bags_image = analyze_sleep_quality(cur_face)
|
47 |
+
sleep_quality_scores.append(sleep_quality_score)
|
48 |
+
eye_bags_images.append(cv2.resize(eye_bags_image, (224, 224)))
|
49 |
+
|
50 |
+
sleep_quality_viz = create_sleep_quality_visualization(cur_face, sleep_quality_score)
|
51 |
+
|
52 |
+
cur_face = cv2.resize(cur_face, (224, 224))
|
53 |
+
|
54 |
+
vid_writer_face.write(cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR))
|
55 |
+
vid_writer_sleep.write(sleep_quality_viz)
|
56 |
+
|
57 |
+
vid_writer_original.write(frame)
|
58 |
+
frames.append(len(frames) + 1)
|
59 |
+
|
60 |
+
cap.release()
|
61 |
+
vid_writer_original.release()
|
62 |
+
vid_writer_face.release()
|
63 |
+
vid_writer_sleep.release()
|
64 |
+
|
65 |
+
sleep_stat = sleep_quality_statistics_plot(frames, sleep_quality_scores)
|
66 |
+
|
67 |
+
if eye_bags_images:
|
68 |
+
average_eye_bags_image = np.mean(np.array(eye_bags_images), axis=0).astype(np.uint8)
|
69 |
+
else:
|
70 |
+
average_eye_bags_image = np.zeros((224, 224, 3), dtype=np.uint8)
|
71 |
+
|
72 |
+
return (path_save_video_original, path_save_video_face, path_save_video_sleep,
|
73 |
+
average_eye_bags_image, sleep_stat)
|
74 |
+
|
75 |
+
def analyze_sleep_quality(face_image):
|
76 |
+
# Placeholder function - implement your sleep quality analysis here
|
77 |
+
sleep_quality_score = np.random.random()
|
78 |
+
eye_bags_image = cv2.resize(face_image, (224, 224))
|
79 |
+
return sleep_quality_score, eye_bags_image
|
80 |
+
|
81 |
+
def create_sleep_quality_visualization(face_image, sleep_quality_score):
|
82 |
+
viz = face_image.copy()
|
83 |
+
cv2.putText(viz, f"Sleep Quality: {sleep_quality_score:.2f}", (10, 30),
|
84 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
85 |
+
return cv2.cvtColor(viz, cv2.COLOR_RGB2BGR)
|
86 |
+
|
87 |
+
def sleep_quality_statistics_plot(frames, sleep_quality_scores):
|
88 |
+
fig, ax = plt.subplots()
|
89 |
+
ax.plot(frames, sleep_quality_scores)
|
90 |
+
ax.set_xlabel('Frame')
|
91 |
+
ax.set_ylabel('Sleep Quality Score')
|
92 |
+
ax.set_title('Sleep Quality Over Time')
|
93 |
+
plt.tight_layout()
|
94 |
+
return fig
|
app/video_processing.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import mediapipe as mp
|
6 |
+
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
|
7 |
+
from app.face_utils import get_box, display_info
|
8 |
+
from app.config import config_data
|
9 |
+
from app.plot import statistics_plot
|
10 |
+
from .au_processing import features_to_au_intensities, au_statistics_plot
|
11 |
+
|
12 |
+
mp_face_mesh = mp.solutions.face_mesh
|
13 |
+
|
14 |
+
def preprocess_video_and_predict(video):
|
15 |
+
cap = cv2.VideoCapture(video)
|
16 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
17 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
18 |
+
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
19 |
+
|
20 |
+
path_save_video_face = 'result_face.mp4'
|
21 |
+
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
22 |
+
|
23 |
+
path_save_video_hm = 'result_hm.mp4'
|
24 |
+
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
25 |
+
|
26 |
+
lstm_features = []
|
27 |
+
count_frame = 1
|
28 |
+
count_face = 0
|
29 |
+
probs = []
|
30 |
+
frames = []
|
31 |
+
au_intensities_list = []
|
32 |
+
last_output = None
|
33 |
+
last_heatmap = None
|
34 |
+
last_au_intensities = None
|
35 |
+
cur_face = None
|
36 |
+
|
37 |
+
with mp_face_mesh.FaceMesh(
|
38 |
+
max_num_faces=1,
|
39 |
+
refine_landmarks=False,
|
40 |
+
min_detection_confidence=0.5,
|
41 |
+
min_tracking_confidence=0.5) as face_mesh:
|
42 |
+
|
43 |
+
while cap.isOpened():
|
44 |
+
_, frame = cap.read()
|
45 |
+
if frame is None: break
|
46 |
+
|
47 |
+
frame_copy = frame.copy()
|
48 |
+
frame_copy.flags.writeable = False
|
49 |
+
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
50 |
+
results = face_mesh.process(frame_copy)
|
51 |
+
frame_copy.flags.writeable = True
|
52 |
+
|
53 |
+
if results.multi_face_landmarks:
|
54 |
+
for fl in results.multi_face_landmarks:
|
55 |
+
startX, startY, endX, endY = get_box(fl, w, h)
|
56 |
+
cur_face = frame_copy[startY:endY, startX: endX]
|
57 |
+
|
58 |
+
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
59 |
+
cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
60 |
+
with torch.no_grad():
|
61 |
+
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
|
62 |
+
au_intensities = features_to_au_intensities(pth_model_static(cur_face_copy))
|
63 |
+
|
64 |
+
grayscale_cam = cam(input_tensor=cur_face_copy)
|
65 |
+
grayscale_cam = grayscale_cam[0, :]
|
66 |
+
cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
|
67 |
+
cur_face_hm = np.float32(cur_face_hm) / 255
|
68 |
+
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
|
69 |
+
last_heatmap = heatmap
|
70 |
+
last_au_intensities = au_intensities
|
71 |
+
|
72 |
+
if len(lstm_features) == 0:
|
73 |
+
lstm_features = [features]*10
|
74 |
+
else:
|
75 |
+
lstm_features = lstm_features[1:] + [features]
|
76 |
+
|
77 |
+
lstm_f = torch.from_numpy(np.vstack(lstm_features))
|
78 |
+
lstm_f = torch.unsqueeze(lstm_f, 0)
|
79 |
+
with torch.no_grad():
|
80 |
+
output = pth_model_dynamic(lstm_f).detach().numpy()
|
81 |
+
last_output = output
|
82 |
+
|
83 |
+
if count_face == 0:
|
84 |
+
count_face += 1
|
85 |
+
|
86 |
+
else:
|
87 |
+
if last_output is not None:
|
88 |
+
output = last_output
|
89 |
+
heatmap = last_heatmap
|
90 |
+
au_intensities = last_au_intensities
|
91 |
+
|
92 |
+
elif last_output is None:
|
93 |
+
output = np.empty((1, 7))
|
94 |
+
output[:] = np.nan
|
95 |
+
au_intensities = np.empty(24)
|
96 |
+
au_intensities[:] = np.nan
|
97 |
+
|
98 |
+
probs.append(output[0])
|
99 |
+
frames.append(count_frame)
|
100 |
+
au_intensities_list.append(au_intensities)
|
101 |
+
else:
|
102 |
+
if last_output is not None:
|
103 |
+
lstm_features = []
|
104 |
+
empty = np.empty((7))
|
105 |
+
empty[:] = np.nan
|
106 |
+
probs.append(empty)
|
107 |
+
frames.append(count_frame)
|
108 |
+
au_intensities_list.append(np.full(24, np.nan))
|
109 |
+
|
110 |
+
if cur_face is not None:
|
111 |
+
heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
|
112 |
+
|
113 |
+
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
|
114 |
+
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
|
115 |
+
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
|
116 |
+
vid_writer_face.write(cur_face)
|
117 |
+
vid_writer_hm.write(heatmap_f)
|
118 |
+
|
119 |
+
count_frame += 1
|
120 |
+
if count_face != 0:
|
121 |
+
count_face += 1
|
122 |
+
|
123 |
+
vid_writer_face.release()
|
124 |
+
vid_writer_hm.release()
|
125 |
+
|
126 |
+
stat = statistics_plot(frames, probs)
|
127 |
+
au_stat = au_statistics_plot(frames, au_intensities_list)
|
128 |
+
|
129 |
+
if not stat or not au_stat:
|
130 |
+
return None, None, None, None, None
|
131 |
+
|
132 |
+
return video, path_save_video_face, path_save_video_hm, stat, au_stat
|
app_gpuzero.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tabs.heart_rate_variability import create_hrv_tab
|
3 |
+
from tabs.blink_detection import create_blink_tab
|
4 |
+
from tabs.gaze_estimation import create_gaze_estimation_tab
|
5 |
+
from tabs.speech_stress_analysis import create_voice_stress_tab
|
6 |
+
from tabs.head_posture_detection import create_head_posture_tab
|
7 |
+
from tabs.face_expressions import create_face_expressions_tab
|
8 |
+
from tabs.speech_emotion_recognition import create_emotion_recognition_tab
|
9 |
+
from tabs.sleep_quality import create_sleep_quality_tab
|
10 |
+
from tabs.sentiment_analysis import create_sentiment_tab
|
11 |
+
from tabs.emotion_analysis import create_emotion_tab
|
12 |
+
from tabs.body_movement_analysis import create_body_movement_tab
|
13 |
+
from tabs.posture_analysis import create_posture_analysis_tab
|
14 |
+
from tabs.skin_analysis import create_skin_conductance_tab
|
15 |
+
from tabs.FACS_analysis_sad import create_facs_analysis_sad_tab
|
16 |
+
from tabs.roberta_chatbot import create_roberta_chatbot_tab
|
17 |
+
|
18 |
+
# Import the UI components
|
19 |
+
from ui_components import CUSTOM_CSS, HEADER_HTML, DISCLAIMER_HTML
|
20 |
+
|
21 |
+
TAB_STRUCTURE = [
|
22 |
+
("Visual Analysis", [
|
23 |
+
("Emotional Face Expressions", create_face_expressions_tab),
|
24 |
+
("FACS for Stress, Anxiety, Depression", create_facs_analysis_sad_tab),
|
25 |
+
("Gaze Estimation", create_gaze_estimation_tab),
|
26 |
+
("Head Posture", create_head_posture_tab),
|
27 |
+
("Blink Rate", create_blink_tab),
|
28 |
+
("Sleep Quality", create_sleep_quality_tab),
|
29 |
+
("Heart Rate Variability", create_hrv_tab),
|
30 |
+
("Body Movement", create_body_movement_tab),
|
31 |
+
("Posture", create_posture_analysis_tab),
|
32 |
+
("Skin", create_skin_conductance_tab)
|
33 |
+
]),
|
34 |
+
("Speech Analysis", [
|
35 |
+
("Speech Stress", create_voice_stress_tab),
|
36 |
+
("Speech Emotion", create_emotion_recognition_tab)
|
37 |
+
]),
|
38 |
+
("Text Analysis", [
|
39 |
+
("Sentiment", create_sentiment_tab),
|
40 |
+
("Emotion", create_emotion_tab),
|
41 |
+
("Roberta Mental Health Chatbot", create_roberta_chatbot_tab)
|
42 |
+
]),
|
43 |
+
("Brain Analysis (coming soon)", [
|
44 |
+
])
|
45 |
+
]
|
46 |
+
|
47 |
+
def create_demo():
|
48 |
+
with gr.Blocks(css=CUSTOM_CSS) as demo:
|
49 |
+
gr.Markdown(HEADER_HTML)
|
50 |
+
with gr.Tabs(elem_classes=["main-tab"]):
|
51 |
+
for main_tab, sub_tabs in TAB_STRUCTURE:
|
52 |
+
with gr.Tab(main_tab):
|
53 |
+
with gr.Tabs():
|
54 |
+
for sub_tab, create_fn in sub_tabs:
|
55 |
+
with gr.Tab(sub_tab):
|
56 |
+
create_fn()
|
57 |
+
gr.HTML(DISCLAIMER_HTML)
|
58 |
+
return demo
|
59 |
+
|
60 |
+
# Create the demo instance
|
61 |
+
demo = create_demo()
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.queue(api_open=True).launch(share=False)
|
assets/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|