Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- all_combine_main.csv +0 -0
- app.py +79 -0
- requirements.txt +5 -0
all_combine_main.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Step 1: Read the CSV file
|
8 |
+
df = pd.read_csv('./all_combine_main.csv') # Ensure the CSV file is uploaded to Hugging Face
|
9 |
+
|
10 |
+
# Step 2: Extract the text column for embeddings and keep the entire DataFrame rows
|
11 |
+
text_column = 'detail_โครงการ' # Replace 'your_column' with your text column name
|
12 |
+
texts = df[text_column].astype(str).tolist()
|
13 |
+
|
14 |
+
# Keep the entire DataFrame rows as a list of dictionaries
|
15 |
+
rows = df.to_dict('records')
|
16 |
+
|
17 |
+
# Step 3: Load the pre-trained model
|
18 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
|
19 |
+
|
20 |
+
# Step 4: Generate embeddings for all texts
|
21 |
+
embeddings = model.encode(texts, show_progress_bar=True)
|
22 |
+
|
23 |
+
# Optional: Save embeddings to disk to avoid recomputing in future runs
|
24 |
+
# np.save('embeddings.npy', embeddings)
|
25 |
+
# If you have saved embeddings before, you can load them directly
|
26 |
+
# embeddings = np.load('embeddings.npy')
|
27 |
+
|
28 |
+
# Step 5: Define the semantic search function
|
29 |
+
def semantic_search(query, embeddings, texts, rows, top_n=5):
|
30 |
+
# Generate embedding for the query
|
31 |
+
query_embedding = model.encode([query])
|
32 |
+
|
33 |
+
# Compute cosine similarities
|
34 |
+
similarities = cosine_similarity(query_embedding, embeddings)[0]
|
35 |
+
|
36 |
+
# Get the indices of the top_n most similar texts
|
37 |
+
top_indices = np.argsort(similarities)[::-1][:top_n]
|
38 |
+
|
39 |
+
# Return the top_n most similar rows and their similarity scores
|
40 |
+
results = [(rows[idx], similarities[idx]) for idx in top_indices]
|
41 |
+
return results
|
42 |
+
|
43 |
+
# Step 6: Create the Gradio interface
|
44 |
+
def search_interface(query):
|
45 |
+
# Perform the search
|
46 |
+
results = semantic_search(query, embeddings, texts, rows)
|
47 |
+
|
48 |
+
# Specify the columns to display
|
49 |
+
columns_to_display = ['ชื่อกระทรวง', 'งบประมาณปี68', 'ชื่อสำนักงาน', 'งบประมาณปี68_สำนักงาน', 'ชื่อโครงการ', 'งบประมาณ_โครงการ']
|
50 |
+
|
51 |
+
# Prepare the output
|
52 |
+
output = ""
|
53 |
+
for row, score in results:
|
54 |
+
output += f"**Score:** {score:.4f}\n\n"
|
55 |
+
|
56 |
+
# Check if either 'ชื่อโครงการ' or 'งบประมาณ_โครงการ' is NaN
|
57 |
+
|
58 |
+
|
59 |
+
# Display only specified columns
|
60 |
+
for key, value in row.items():
|
61 |
+
if key in columns_to_display and not pd.isna(value): # Only show specified columns and skip NaNs
|
62 |
+
output += f"**{key}:** {value}\n\n"
|
63 |
+
if pd.isna(row.get('ชื่อโครงการ')) or pd.isna(row.get('งบประมาณ_โครงการ')):
|
64 |
+
# Display 'detail_โครงการ' if any of the above columns are NaN
|
65 |
+
output += f"**detail_โครงการ:** {row.get('detail_โครงการ')}\n\n"
|
66 |
+
output += "---\n\n"
|
67 |
+
|
68 |
+
return output
|
69 |
+
|
70 |
+
iface = gr.Interface(
|
71 |
+
fn=search_interface,
|
72 |
+
inputs=gr.Textbox(lines=2, placeholder='Enter your search query here...'),
|
73 |
+
outputs="markdown",
|
74 |
+
title="Semantic Search Application",
|
75 |
+
description="Enter a search query to find the most relevant entries from the dataset.",
|
76 |
+
)
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
iface.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
sentence-transformers
|
4 |
+
scikit-learn
|
5 |
+
gradio
|