import os import gradio as gr from langchain_groq import ChatGroq from langchain.prompts import ChatPromptTemplate from langchain.chains import RetrievalQA, ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from langchain_huggingface.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import Chroma def rag_retriever(message, history, system_prompt, num_sources=4, temperature=0): chat = ChatGroq(temperature=temperature, model_name="llama3-70b-8192", api_key=os.getenv("GROQ_API_KEY")) embeddings = HuggingFaceEmbeddings(model_name="avsolatorio/GIST-large-Embedding-v0") store = Chroma(persist_directory="chroma.sqlite3", embedding_function=embeddings, collection_name='ai_act') prompt_template = ChatPromptTemplate.from_messages([ ("system", system_prompt+""" Use the following pieces of context to answer the user's question. ---------------- {context}"""), ("human", "{question}") ]) memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer", return_messages=True) retriever = store.as_retriever(search_type="similarity", search_kwargs={'k': num_sources}) chain = ConversationalRetrievalChain.from_llm(llm=chat, retriever=retriever, return_source_documents=True, memory=memory, combine_docs_chain_kwargs={"prompt": prompt_template}) output = chain.invoke({"question": message}) sources = "" for doc in output['source_documents']: source_content = doc.page_content.strip().replace("\r\n", " ").replace("\r", " ").replace("\n", " ") sources += f'Страница: {doc.metadata["page"]+1}
{source_content}

' response = f"""
Отговор:
{output['answer']}
Източници:
{sources}""" return response rag = gr.ChatInterface(rag_retriever, examples=[["Каква е целта на настоящия регламент", "You are an expert assistant in Bulgarian regulations. Provide precise and clear answers. Provide a detailed and comprehensive answer, incorporating as much relevant information as possible. Always respond in Bulgarian, regardless of the language used in the question."], ["Какво са Системите с ИИ", "You are an expert assistant in Bulgarian regulations. Provide precise and clear answers. Always respond in Bulgarian, regardless of the language used in the question."], ["Какво е равнище на технологично развитие", "You are an expert assistant in Bulgarian regulations. Provide precise and clear answers. Always respond in Bulgarian, regardless of the language used in the question."]], title="Чатене с документа AI Act", description="Питайте каквото пожелаете, но пишете на български.", chatbot=gr.Chatbot(placeholder="Вашият личен AI Act помощник
Питайте каквото пожелаете, но пишете на български."), textbox=gr.Textbox(placeholder="Задайте своя въпрос...", container=False, scale=7), retry_btn="Отново", undo_btn="Назад", clear_btn="Изчистете", submit_btn="Изпрати", additional_inputs=[gr.components.Textbox("You are an expert assistant in Bulgarian regulations. Provide precise and clear answers. Always respond in Bulgarian, regardless of the language used in the question.", label="System Prompt"), gr.components.Slider(minimum=1, maximum=10, value=4, step=1, label="Брой препратки"), gr.components.Slider(minimum=0, maximum=2, value=0, label="Креативност на модела", info="Ако е много високо моделът си измисля, но може да напише интересни неща."),], additional_inputs_accordion=gr.Accordion("Допълнителни настройки", open=False), ) rag.launch()