import streamlit as st import pandas as pd import numpy as np from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve from sklearn.metrics import precision_score, recall_score def main(): st.title("Binary Classification Web App") st.sidebar.title("Binary Classification Web App") st.markdown("Are your mushroom is editable or poisionous? ") st.sidebar.markdown("Are your mushroom is editable or poisionous? ") def load_data(): data = pd.read_csv('/home/rhyme/Desktop/Project/mushrooms.csv') label = LabelEncoder() for col in data.columns: data[col]= label.fit_transform(data[col]) return data @st.cache(persist=True) def split(df): y = df.type x = df.drop(columns=['type']) x_train , x_test, y_train,y_test = train_test_split(x,y,test_size=0.3, random_state=0) return x_train,x_test, y_train,y_test def plot_metrics(metrics_list): if 'Confusion Matrix' in metrics_list: st.subheader("Confusion Matrix") plot_confusion_matrix(model, x_test,y_test,display_labels=class_names) st.pyplot() if 'ROC Curve' in metrics_list: st.subheader("ROC Curve") plot_roc_curve(model,x_test,y_test) st.pyplot() if 'Precision-Recall Curve' in metrics_list: st.subheader("Precision-Recall Curve") plot_precision_recall_curve(model,x_test,y_test) st.pyplot() df = load_data() x_train, x_test, y_train, y_test = split(df) class_names = ['edible', 'poisionous'] st.sidebar.subheader("Chosse Classifiers") classifier = st.sidebar.selectbox("Classifier", ("Support Vector Machine(SVM)", "Logostics Regression", "Random Forest")) if classifier == "Support Vector Machine(SVM)": st.sidebar.subheader("Model Hyperparameters") C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C') kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal') gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma') metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' )) if st.sidebar.button("Classify", key = 'classify'): st.subheader("Support Vector Machine (SVM)") model = SVC(C=C,kernel=kernel, gamma=gamma) model.fit(x_train,y_train) accuracy = model.score(x_test,y_test) y_pred = model.predict(x_test) st.write("Accuracy: ",accuracy.round(2)) st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2)) st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2)) plot_metrics(metrics) if classifier == "Logostics Regression": st.sidebar.subheader("Model Hyperparameters") C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C_LR') max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter') # kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal') # gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma') metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' )) if st.sidebar.button("Classify", key = 'classify'): st.subheader("Logistics Regression") model = LogisticRegression(C=C,max_iter =max_iter) model.fit(x_train,y_train) accuracy = model.score(x_test,y_test) y_pred = model.predict(x_test) st.write("Accuracy: ",accuracy.round(2)) st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2)) st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2)) plot_metrics(metrics) #Random Forest if classifier == "Random Forest": st.sidebar.subheader("Model Hyperparameters") n_estimators = st.sidebar.number_input("The number of trees in the forest", 100, 500, step=10,key='n_estmators') max_depth = st.sidebar.number_input("The maximum depth of the tree", 1, 20 , step=1, key='max_depth') bootstrap = st.sidebar.radio("Bootstrap samples when builoding trees", ('True','False'),key='bootstrap') # C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C_LR') # max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter') # kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal') # gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma') metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' )) if st.sidebar.button("Classify", key = 'classify'): st.subheader("Random Forest") model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth,bootstrap=bootstrap) model.fit(x_train,y_train) accuracy = model.score(x_test,y_test) y_pred = model.predict(x_test) st.write("Accuracy: ",accuracy.round(2)) st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2)) st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2)) plot_metrics(metrics) if st.sidebar.checkbox("show raw data",False): st.subheader("Mushroom data Set (Classifications)") st.write(df) if __name__ == '__main__': main()