import os import torch import numpy as np import random import scipy.io as scio import src.utils.audio as audio import subprocess, platform def crop_pad_audio(wav, audio_length): if len(wav) > audio_length: wav = wav[:audio_length] elif len(wav) < audio_length: wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0) return wav def parse_audio_length(audio_length, sr, fps): bit_per_frames = sr / fps num_frames = int(audio_length / bit_per_frames) audio_length = int(num_frames * bit_per_frames) return audio_length, num_frames def generate_blink_seq(num_frames): ratio = np.zeros((num_frames,1)) frame_id = 0 while frame_id in range(num_frames): #start = random.choice(range(60,70)) start = 80 if frame_id+start+9<=num_frames - 1: ratio[frame_id+start:frame_id+start+9, 0] = [0.5,0.6,0.7,0.9,1, 0.9, 0.7,0.6,0.5] frame_id = frame_id+start+9 else: break return ratio def generate_blink_seq_randomly(num_frames): ratio = np.zeros((num_frames,1)) if num_frames<=20: return ratio frame_id = 0 while frame_id in range(num_frames): #start = random.choice(range(60,70)) start = random.choice(range(min(10,num_frames), min(int(num_frames/2), 70))) if frame_id+start+5<=num_frames - 1: ratio[frame_id+start:frame_id+start+5, 0] = [0.5, 0.9, 1.0, 0.9, 0.5] frame_id = frame_id+start+5 else: break return ratio def get_data(first_coeff_path, audio_path, device): syncnet_mel_step_size = 16 syncnet_T = 5 MAX_FRAME = 32 fps = 25 pic_name = os.path.splitext(os.path.split(first_coeff_path)[-1])[0] audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0] source_semantics_path = first_coeff_path source_semantics_dict = scio.loadmat(source_semantics_path) ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70 if '.mp3' in audio_path: new_audio = audio_path.replace('.mp3', '.wav') command = 'ffmpeg -i '+ audio_path + ' -acodec pcm_s16le -ac 1 -ar 16000 ' + new_audio subprocess.call(command, shell=platform.system() != 'Windows') else: new_audio = audio_path wav = audio.load_wav(new_audio, 16000) wav_length, num_frames = parse_audio_length(len(wav), 16000, 25) wav = crop_pad_audio(wav, wav_length) orig_mel = audio.melspectrogram(wav).T spec = orig_mel.copy() # nframes 80 indiv_mels = [] for i in range(num_frames): start_frame_num = i-2 start_idx = int(80. * (start_frame_num / float(fps))) end_idx = start_idx + syncnet_mel_step_size seq = list(range(start_idx, end_idx)) seq = [ min(max(item, 0), orig_mel.shape[0]-1) for item in seq ] m = spec[seq, :] indiv_mels.append(m.T) indiv_mels = np.asarray(indiv_mels) # T 80 16 ratio = generate_blink_seq_randomly(num_frames) # T indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1).unsqueeze(0) # bs T 1 80 16 ratio = torch.FloatTensor(ratio).unsqueeze(0) # bs T ref_coeff = torch.FloatTensor(ref_coeff).unsqueeze(0) # bs 1 70 indiv_mels = indiv_mels.to(device) ratio = ratio.to(device) ref_coeff = ref_coeff.to(device) return {'indiv_mels': indiv_mels, 'ref': ref_coeff, 'num_frames': num_frames, 'ratio_gt': ratio, 'audio_name': audio_name, 'pic_name': pic_name}