import os import torch import spaces import gradio as gr from diffusers import FluxFillPipeline, FluxTransformer2DModel, AutoencoderKL import random import numpy as np from huggingface_hub import hf_hub_download os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" MAX_SEED = np.iinfo(np.int32).max repo_id = "black-forest-labs/FLUX.1-Fill-dev" if torch.cuda.is_available(): pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda") @spaces.GPU() def inpaintGen( imgMask, inpaint_prompt: str, guidance: float, num_steps: int, seed: int, randomize_seed: bool, progress=gr.Progress(track_tqdm=True)): source_img = imgMask["background"] mask_img = imgMask["layers"][0] if not source_path: raise gr.Error("Please upload an image.") if not mask_path: raise gr.Error("Please draw a mask on the image.") width, height = source_img.size if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator("cpu").manual_seed(seed) result = pipe( prompt=inpaint_prompt, image=source_img, seed=seed, mask_image=mask_img, width=width, height=height, num_inference_steps=num_steps, generator=generator, guidance_scale=guidance, max_sequence_length=512, ).images[0] return result with gr.Blocks(theme="ocean", title="Flux.1 dev inpaint", css=CSS) as demo: gr.HTML("

Flux.1 dev Inpaint

") gr.HTML("""

A partial redraw of the image based on your prompt words and occluded parts.

""") with gr.Row(): with gr.Column(): imgMask = gr.ImageMask(type="pil", label="Image", layers=False, height=800) inpaint_prompt = gr.Textbox(label='Prompts ✏️', placeholder="A hat...") with gr.Row(): Inpaint_sendBtn = gr.Button(value="Submit", variant='primary') Inpaint_clearBtn = gr.ClearButton([imgMask, inpaint_prompt], value="Clear") image_out = gr.Image(type="pil", label="Output", height=960) with gr.Accordion("Advanced ⚙️", open=False): guidance = gr.Slider(label="Guidance scale", minimum=1, maximum=20, value=7.5, step=0.1) num_steps = gr.Slider(label="Steps", minimum=1, maximum=20, value=20, step=1) seed = gr.Number(label="Seed", value=42, precision=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) gr.on( triggers = [ inpaint_prompt.submit, Inpaint_sendBtn.click, ], fn = inpaintGen, inputs = [ imgMask, inpaint_prompt, guidance, num_steps, seed, randomize_seed ], outputs = [image_out, seed] ) if __name__ == "__main__": demo.queue(api_open=False).launch(show_api=False, share=False)