vikvenk commited on
Commit
73f77c9
·
verified ·
1 Parent(s): 4a77cdc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ try:
4
+ clustered_data = pd.read_csv("clustered_data.csv")
5
+ except FileNotFoundError:
6
+ print("Error: 'clustered_data.csv' not found. Make sure it's in the same directory.")
7
+ exit()
8
+
9
+ players_2024 = sorted(clustered_data[clustered_data['year'] == 2024]['player_name'].unique())
10
+
11
+ def get_similar_players(selected_player):
12
+ """Returns a table of similar players based on cluster, including selected player and year."""
13
+
14
+ if selected_player is None:
15
+ return pd.DataFrame(columns=['player_name', 'year', 'targets', 'receptions', 'rec_yards', 'air_yards', 'routes_ran', 'yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr'])
16
+
17
+ try:
18
+ selected_player_data = clustered_data[clustered_data['player_name'] == selected_player].iloc[0].to_dict()
19
+ selected_player_cluster = selected_player_data['cluster']
20
+ except IndexError:
21
+ return pd.DataFrame(columns=['player_name', 'year', 'targets', 'receptions', 'rec_yards', 'air_yards', 'routes_ran', 'yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr'])
22
+
23
+ similar_players = clustered_data[
24
+ (clustered_data['cluster'] == selected_player_cluster) & (clustered_data['player_name'] != selected_player)
25
+ ].copy()
26
+
27
+ # Select and return desired columns, including 'player_name' and 'year'
28
+ similar_players = similar_players[['player_name', 'year', 'targets', 'receptions', 'rec_yards', 'air_yards', 'routes_ran', 'yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr']]
29
+
30
+ # Round specified columns to two decimal places
31
+ for col in ['yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr']:
32
+ similar_players[col] = similar_players[col].round(2)
33
+
34
+ # --- Corrected handling of selected player data ---
35
+ selected_player_df = pd.DataFrame([selected_player_data]) # Create DataFrame from dictionary
36
+ selected_player_df = selected_player_df[['player_name', 'year', 'targets', 'receptions', 'rec_yards', 'air_yards', 'routes_ran', 'yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr']] # Order columns
37
+ for col in ['yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr']:
38
+ selected_player_df[col] = selected_player_df[col].round(2)
39
+ similar_players = pd.concat([selected_player_df, similar_players], ignore_index=True)
40
+
41
+ return similar_players
42
+
43
+ with gr.Blocks() as demo:
44
+ player_dropdown = gr.Dropdown(choices=players_2024, label="Select a 2024 Player")
45
+ output_table = gr.DataFrame(label="Similar Players")
46
+
47
+ player_dropdown.change(get_similar_players, inputs=player_dropdown, outputs=output_table)
48
+
49
+ demo.launch(share = True)