Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
try:
|
4 |
+
clustered_data = pd.read_csv("clustered_data.csv")
|
5 |
+
except FileNotFoundError:
|
6 |
+
print("Error: 'clustered_data.csv' not found. Make sure it's in the same directory.")
|
7 |
+
exit()
|
8 |
+
|
9 |
+
players_2024 = sorted(clustered_data[clustered_data['year'] == 2024]['player_name'].unique())
|
10 |
+
|
11 |
+
def get_similar_players(selected_player):
|
12 |
+
"""Returns a table of similar players based on cluster, including selected player and year."""
|
13 |
+
|
14 |
+
if selected_player is None:
|
15 |
+
return pd.DataFrame(columns=['player_name', 'year', 'targets', 'receptions', 'rec_yards', 'air_yards', 'routes_ran', 'yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr'])
|
16 |
+
|
17 |
+
try:
|
18 |
+
selected_player_data = clustered_data[clustered_data['player_name'] == selected_player].iloc[0].to_dict()
|
19 |
+
selected_player_cluster = selected_player_data['cluster']
|
20 |
+
except IndexError:
|
21 |
+
return pd.DataFrame(columns=['player_name', 'year', 'targets', 'receptions', 'rec_yards', 'air_yards', 'routes_ran', 'yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr'])
|
22 |
+
|
23 |
+
similar_players = clustered_data[
|
24 |
+
(clustered_data['cluster'] == selected_player_cluster) & (clustered_data['player_name'] != selected_player)
|
25 |
+
].copy()
|
26 |
+
|
27 |
+
# Select and return desired columns, including 'player_name' and 'year'
|
28 |
+
similar_players = similar_players[['player_name', 'year', 'targets', 'receptions', 'rec_yards', 'air_yards', 'routes_ran', 'yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr']]
|
29 |
+
|
30 |
+
# Round specified columns to two decimal places
|
31 |
+
for col in ['yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr']:
|
32 |
+
similar_players[col] = similar_players[col].round(2)
|
33 |
+
|
34 |
+
# --- Corrected handling of selected player data ---
|
35 |
+
selected_player_df = pd.DataFrame([selected_player_data]) # Create DataFrame from dictionary
|
36 |
+
selected_player_df = selected_player_df[['player_name', 'year', 'targets', 'receptions', 'rec_yards', 'air_yards', 'routes_ran', 'yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr']] # Order columns
|
37 |
+
for col in ['yprr', 'tprr', 'adot', 'target_share', 'year_two_half_ppr']:
|
38 |
+
selected_player_df[col] = selected_player_df[col].round(2)
|
39 |
+
similar_players = pd.concat([selected_player_df, similar_players], ignore_index=True)
|
40 |
+
|
41 |
+
return similar_players
|
42 |
+
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
player_dropdown = gr.Dropdown(choices=players_2024, label="Select a 2024 Player")
|
45 |
+
output_table = gr.DataFrame(label="Similar Players")
|
46 |
+
|
47 |
+
player_dropdown.change(get_similar_players, inputs=player_dropdown, outputs=output_table)
|
48 |
+
|
49 |
+
demo.launch(share = True)
|