Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -74,30 +74,16 @@ As an AI, provide accurate and relevant information based on the provided docume
|
|
74 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
75 |
|
76 |
# Function to create a conversational chain
|
77 |
-
def create_conversational_chain(
|
78 |
-
model_name = 'TheBloke/Llama-2-7b-chat-hf'
|
79 |
-
model_directory = "files"
|
80 |
-
#Check if the model file exists in the specified directory
|
81 |
-
model_file = os.path.join(model_directory, model_name)
|
82 |
-
if os.path.exists(model_file):
|
83 |
-
model_path = model_file
|
84 |
-
print("Model file found in the directory. Using the local model file.")
|
85 |
-
else:
|
86 |
-
model_path = "https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/blob/main/llama-2-7b-chat.Q8_0.gguf"
|
87 |
-
print("Model file not found in the directory. Downloading the model from the repository.")
|
88 |
-
#Load the model
|
89 |
-
model = AutoModelForCausalLM.from_pretrained(model_path)
|
90 |
-
print(model_path)
|
91 |
llama_llm = LlamaCpp(
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
retriever = database.as_retriever()
|
101 |
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(template)
|
102 |
|
103 |
memory = ConversationBufferMemory(
|
@@ -109,10 +95,9 @@ def create_conversational_chain(database):
|
|
109 |
#condense_question_prompt=CONDENSE_QUESTION_PROMPT,
|
110 |
memory=memory,
|
111 |
return_source_documents=True))
|
112 |
-
print("Conversational Chain created
|
113 |
return conversation_chain
|
114 |
|
115 |
-
# Function to validate the answer against source documents
|
116 |
def validate_answer(response_answer, source_documents):
|
117 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
118 |
similarity_threshold = 0.5
|
|
|
74 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
75 |
|
76 |
# Function to create a conversational chain
|
77 |
+
def create_conversational_chain(vectordb):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
llama_llm = LlamaCpp(
|
79 |
+
model_path="llama-2-7b-chat.Q8_0.gguf",
|
80 |
+
temperature=0.75,
|
81 |
+
max_tokens=200,
|
82 |
+
top_p=1,
|
83 |
+
callback_manager=callback_manager,
|
84 |
+
n_ctx=3000)
|
85 |
+
|
86 |
+
retriever = vectordb.as_retriever()
|
|
|
87 |
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(template)
|
88 |
|
89 |
memory = ConversationBufferMemory(
|
|
|
95 |
#condense_question_prompt=CONDENSE_QUESTION_PROMPT,
|
96 |
memory=memory,
|
97 |
return_source_documents=True))
|
98 |
+
print("Conversational Chain created for the LLM using the vector store")
|
99 |
return conversation_chain
|
100 |
|
|
|
101 |
def validate_answer(response_answer, source_documents):
|
102 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
103 |
similarity_threshold = 0.5
|