Spaces:
Running
Running
import os | |
import cv2 | |
import glob | |
import time | |
import torch | |
import shutil | |
import argparse | |
import platform | |
import datetime | |
import subprocess | |
import insightface | |
import onnxruntime | |
import numpy as np | |
import gradio as gr | |
from tqdm import tqdm | |
import concurrent.futures | |
from moviepy.editor import VideoFileClip | |
from nsfw_detector import get_nsfw_detector | |
from face_swapper import Inswapper, paste_to_whole, place_foreground_on_background | |
from face_analyser import detect_conditions, get_analysed_data, swap_options_list | |
from face_enhancer import get_available_enhancer_names, load_face_enhancer_model | |
from face_parsing import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion | |
from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref | |
## ------------------------------ USER ARGS ------------------------------ | |
parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper") | |
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd()) | |
parser.add_argument("--batch_size", help="Gpu batch size", default=32) | |
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False) | |
parser.add_argument( | |
"--colab", action="store_true", help="Enable colab mode", default=False | |
) | |
user_args = parser.parse_args() | |
## ------------------------------ DEFAULTS ------------------------------ | |
USE_COLAB = user_args.colab | |
USE_CUDA = user_args.cuda | |
DEF_OUTPUT_PATH = user_args.out_dir | |
BATCH_SIZE = user_args.batch_size | |
WORKSPACE = None | |
OUTPUT_FILE = None | |
CURRENT_FRAME = None | |
STREAMER = None | |
DETECT_CONDITION = "best detection" | |
DETECT_SIZE = 640 | |
DETECT_THRESH = 0.6 | |
NUM_OF_SRC_SPECIFIC = 10 | |
MASK_INCLUDE = [ | |
"Skin", | |
"R-Eyebrow", | |
"L-Eyebrow", | |
"L-Eye", | |
"R-Eye", | |
"Nose", | |
"Mouth", | |
"L-Lip", | |
"U-Lip" | |
] | |
MASK_SOFT_KERNEL = 17 | |
MASK_SOFT_ITERATIONS = 7 | |
MASK_BLUR_AMOUNT = 20 | |
FACE_SWAPPER = None | |
FACE_ANALYSER = None | |
FACE_ENHANCER = None | |
FACE_PARSER = None | |
NSFW_DETECTOR = None | |
FACE_ENHANCER_LIST = ["NONE"] | |
FACE_ENHANCER_LIST.extend(get_available_enhancer_names()) | |
## ------------------------------ SET EXECUTION PROVIDER ------------------------------ | |
# Note: Non CUDA users may change settings here | |
PROVIDER = ["CPUExecutionProvider"] | |
if USE_CUDA: | |
available_providers = onnxruntime.get_available_providers() | |
if "CUDAExecutionProvider" in available_providers: | |
print("\n********** Running on CUDA **********\n") | |
PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"] | |
else: | |
USE_CUDA = False | |
print("\n********** CUDA unavailable running on CPU **********\n") | |
else: | |
USE_CUDA = False | |
print("\n********** Running on CPU **********\n") | |
device = "cuda" if USE_CUDA else "cpu" | |
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None | |
## ------------------------------ LOAD MODELS ------------------------------ | |
def load_face_analyser_model(name="buffalo_l"): | |
global FACE_ANALYSER | |
if FACE_ANALYSER is None: | |
FACE_ANALYSER = insightface.app.FaceAnalysis(name=name, providers=PROVIDER) | |
FACE_ANALYSER.prepare( | |
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH | |
) | |
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"): | |
global FACE_SWAPPER | |
if FACE_SWAPPER is None: | |
batch = int(BATCH_SIZE) if device == "cuda" else 1 | |
FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER) | |
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"): | |
global FACE_PARSER | |
if FACE_PARSER is None: | |
FACE_PARSER = init_parser(path, mode=device) | |
def load_nsfw_detector_model(path="./assets/pretrained_models/nsfwmodel_281.pth"): | |
global NSFW_DETECTOR | |
if NSFW_DETECTOR is None: | |
NSFW_DETECTOR = get_nsfw_detector(model_path=path, device=device) | |
load_face_analyser_model() | |
load_face_swapper_model() | |
## ------------------------------ MAIN PROCESS ------------------------------ | |
def process( | |
input_type, | |
image_path, | |
video_path, | |
directory_path, | |
source_path, | |
output_path, | |
output_name, | |
keep_output_sequence, | |
condition, | |
age, | |
distance, | |
face_enhancer_name, | |
enable_face_parser, | |
mask_includes, | |
mask_soft_kernel, | |
mask_soft_iterations, | |
blur_amount, | |
face_scale, | |
enable_laplacian_blend, | |
crop_top, | |
crop_bott, | |
crop_left, | |
crop_right, | |
*specifics, | |
): | |
global WORKSPACE | |
global OUTPUT_FILE | |
global PREVIEW | |
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None | |
## ------------------------------ GUI UPDATE FUNC ------------------------------ | |
def ui_before(): | |
return ( | |
gr.update(visible=True, value=PREVIEW), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(visible=False), | |
) | |
def ui_after(): | |
return ( | |
gr.update(visible=True, value=PREVIEW), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(visible=False), | |
) | |
def ui_after_vid(): | |
return ( | |
gr.update(visible=False), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(value=OUTPUT_FILE, visible=True), | |
) | |
start_time = time.time() | |
total_exec_time = lambda start_time: divmod(time.time() - start_time, 60) | |
get_finsh_text = lambda start_time: f"✔️ Completed in {int(total_exec_time(start_time)[0])} min {int(total_exec_time(start_time)[1])} sec." | |
## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------ | |
yield "### \n ⌛ Loading NSFW detector model...", *ui_before() | |
load_nsfw_detector_model() | |
yield "### \n ⌛ Loading face analyser model...", *ui_before() | |
load_face_analyser_model() | |
yield "### \n ⌛ Loading face swapper model...", *ui_before() | |
load_face_swapper_model() | |
if face_enhancer_name != "NONE": | |
yield f"### \n ⌛ Loading {face_enhancer_name} model...", *ui_before() | |
FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device) | |
else: | |
FACE_ENHANCER = None | |
if enable_face_parser: | |
yield "### \n ⌛ Loading face parsing model...", *ui_before() | |
load_face_parser_model() | |
includes = mask_regions_to_list(mask_includes) | |
smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=int(mask_soft_iterations)).to(device) if mask_soft_iterations > 0 else None | |
specifics = list(specifics) | |
half = len(specifics) // 2 | |
sources = specifics[:half] | |
specifics = specifics[half:] | |
## ------------------------------ ANALYSE & SWAP FUNC ------------------------------ | |
def swap_process(image_sequence): | |
yield "### \n ⌛ Checking contents...", *ui_before() | |
nsfw = NSFW_DETECTOR.is_nsfw(image_sequence) | |
if nsfw: | |
message = "NSFW Content detected !!!" | |
yield f"### \n 🔞 {message}", *ui_before() | |
assert not nsfw, message | |
return False | |
EMPTY_CACHE() | |
yield "### \n ⌛ Analysing face data...", *ui_before() | |
if condition != "Specific Face": | |
source_data = source_path, age | |
else: | |
source_data = ((sources, specifics), distance) | |
analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data( | |
FACE_ANALYSER, | |
image_sequence, | |
source_data, | |
swap_condition=condition, | |
detect_condition=DETECT_CONDITION, | |
scale=face_scale | |
) | |
yield "### \n ⌛ Swapping faces...", *ui_before() | |
preds, aimgs, matrs = FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources) | |
EMPTY_CACHE() | |
if enable_face_parser: | |
yield "### \n ⌛ Applying face-parsing mask...", *ui_before() | |
for idx, (pred, aimg) in tqdm(enumerate(zip(preds, aimgs)), total=len(preds), desc="Face parsing"): | |
preds[idx] = swap_regions(pred, aimg, FACE_PARSER, smooth_mask, includes=includes, blur=int(blur_amount)) | |
EMPTY_CACHE() | |
if face_enhancer_name != "NONE": | |
yield f"### \n ⌛ Enhancing faces with {face_enhancer_name}...", *ui_before() | |
for idx, pred in tqdm(enumerate(preds), total=len(preds), desc=f"{face_enhancer_name}"): | |
enhancer_model, enhancer_model_runner = FACE_ENHANCER | |
pred = enhancer_model_runner(pred, enhancer_model) | |
preds[idx] = cv2.resize(pred, (512,512)) | |
aimgs[idx] = cv2.resize(aimgs[idx], (512,512)) | |
matrs[idx] /= 0.25 | |
EMPTY_CACHE() | |
split_preds = split_list_by_lengths(preds, num_faces_per_frame) | |
del preds | |
split_aimgs = split_list_by_lengths(aimgs, num_faces_per_frame) | |
del aimgs | |
split_matrs = split_list_by_lengths(matrs, num_faces_per_frame) | |
del matrs | |
yield "### \n ⌛ Post-processing...", *ui_before() | |
def post_process(frame_idx, frame_img, split_preds, split_aimgs, split_matrs, enable_laplacian_blend, crop_top, crop_bott, crop_left, crop_right): | |
whole_img_path = frame_img | |
whole_img = cv2.imread(whole_img_path) | |
for p, a, m in zip(split_preds[frame_idx], split_aimgs[frame_idx], split_matrs[frame_idx]): | |
whole_img = paste_to_whole(p, a, m, whole_img, laplacian_blend=enable_laplacian_blend, crop_mask=(crop_top, crop_bott, crop_left, crop_right)) | |
cv2.imwrite(whole_img_path, whole_img) | |
def concurrent_post_process(image_sequence, split_preds, split_aimgs, split_matrs, enable_laplacian_blend, crop_top, crop_bott, crop_left, crop_right): | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [] | |
for idx, frame_img in enumerate(image_sequence): | |
future = executor.submit( | |
post_process, | |
idx, | |
frame_img, | |
split_preds, | |
split_aimgs, | |
split_matrs, | |
enable_laplacian_blend, | |
crop_top, | |
crop_bott, | |
crop_left, | |
crop_right | |
) | |
futures.append(future) | |
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Post-Processing"): | |
try: | |
result = future.result() | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
concurrent_post_process( | |
image_sequence, | |
split_preds, | |
split_aimgs, | |
split_matrs, | |
enable_laplacian_blend, | |
crop_top, | |
crop_bott, | |
crop_left, | |
crop_right | |
) | |
## ------------------------------ IMAGE ------------------------------ | |
if input_type == "Image": | |
target = cv2.imread(image_path) | |
output_file = os.path.join(output_path, output_name + ".png") | |
cv2.imwrite(output_file, target) | |
for info_update in swap_process([output_file]): | |
yield info_update | |
OUTPUT_FILE = output_file | |
WORKSPACE = output_path | |
PREVIEW = cv2.imread(output_file)[:, :, ::-1] | |
yield get_finsh_text(start_time), *ui_after() | |
## ------------------------------ VIDEO ------------------------------ | |
elif input_type == "Video": | |
temp_path = os.path.join(output_path, output_name, "sequence") | |
os.makedirs(temp_path, exist_ok=True) | |
yield "### \n ⌛ Extracting video frames...", *ui_before() | |
image_sequence = [] | |
cap = cv2.VideoCapture(video_path) | |
curr_idx = 0 | |
while True: | |
ret, frame = cap.read() | |
if not ret:break | |
frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg") | |
cv2.imwrite(frame_path, frame) | |
image_sequence.append(frame_path) | |
curr_idx += 1 | |
cap.release() | |
cv2.destroyAllWindows() | |
for info_update in swap_process(image_sequence): | |
yield info_update | |
yield "### \n ⌛ Merging sequence...", *ui_before() | |
output_video_path = os.path.join(output_path, output_name + ".mp4") | |
merge_img_sequence_from_ref(video_path, image_sequence, output_video_path) | |
if os.path.exists(temp_path) and not keep_output_sequence: | |
yield "### \n ⌛ Removing temporary files...", *ui_before() | |
shutil.rmtree(temp_path) | |
WORKSPACE = output_path | |
OUTPUT_FILE = output_video_path | |
yield get_finsh_text(start_time), *ui_after_vid() | |
## ------------------------------ DIRECTORY ------------------------------ | |
elif input_type == "Directory": | |
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"] | |
temp_path = os.path.join(output_path, output_name) | |
if os.path.exists(temp_path): | |
shutil.rmtree(temp_path) | |
os.mkdir(temp_path) | |
file_paths =[] | |
for file_path in glob.glob(os.path.join(directory_path, "*")): | |
if any(file_path.lower().endswith(ext) for ext in extensions): | |
img = cv2.imread(file_path) | |
new_file_path = os.path.join(temp_path, os.path.basename(file_path)) | |
cv2.imwrite(new_file_path, img) | |
file_paths.append(new_file_path) | |
for info_update in swap_process(file_paths): | |
yield info_update | |
PREVIEW = cv2.imread(file_paths[-1])[:, :, ::-1] | |
WORKSPACE = temp_path | |
OUTPUT_FILE = file_paths[-1] | |
yield get_finsh_text(start_time), *ui_after() | |
## ------------------------------ STREAM ------------------------------ | |
elif input_type == "Stream": | |
pass | |
## ------------------------------ GRADIO FUNC ------------------------------ | |
def update_radio(value): | |
if value == "Image": | |
return ( | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
) | |
elif value == "Video": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
) | |
elif value == "Directory": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
elif value == "Stream": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
def swap_option_changed(value): | |
if value.startswith("Age"): | |
return ( | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
elif value == "Specific Face": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
) | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) | |
def video_changed(video_path): | |
sliders_update = gr.Slider.update | |
button_update = gr.Button.update | |
number_update = gr.Number.update | |
if video_path is None: | |
return ( | |
sliders_update(minimum=0, maximum=0, value=0), | |
sliders_update(minimum=1, maximum=1, value=1), | |
number_update(value=1), | |
) | |
try: | |
clip = VideoFileClip(video_path) | |
fps = clip.fps | |
total_frames = clip.reader.nframes | |
clip.close() | |
return ( | |
sliders_update(minimum=0, maximum=total_frames, value=0, interactive=True), | |
sliders_update( | |
minimum=0, maximum=total_frames, value=total_frames, interactive=True | |
), | |
number_update(value=fps), | |
) | |
except: | |
return ( | |
sliders_update(value=0), | |
sliders_update(value=0), | |
number_update(value=1), | |
) | |
def analyse_settings_changed(detect_condition, detection_size, detection_threshold): | |
yield "### \n ⌛ Applying new values..." | |
global FACE_ANALYSER | |
global DETECT_CONDITION | |
DETECT_CONDITION = detect_condition | |
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER) | |
FACE_ANALYSER.prepare( | |
ctx_id=0, | |
det_size=(int(detection_size), int(detection_size)), | |
det_thresh=float(detection_threshold), | |
) | |
yield f"### \n ✔️ Applied detect condition:{detect_condition}, detection size: {detection_size}, detection threshold: {detection_threshold}" | |
def stop_running(): | |
global STREAMER | |
if hasattr(STREAMER, "stop"): | |
STREAMER.stop() | |
STREAMER = None | |
yield "cancelled !" | |
def slider_changed(show_frame, video_path, frame_index): | |
if not show_frame: | |
return None, None | |
if video_path is None: | |
return None, None | |
clip = VideoFileClip(video_path) | |
frame = clip.get_frame(frame_index / clip.fps) | |
frame_array = np.array(frame) | |
clip.close() | |
return gr.Image.update(value=frame_array, visible=True), gr.Video.update( | |
visible=False | |
) | |
def trim_and_reload(video_path, output_path, output_name, start_frame, stop_frame): | |
yield video_path, f"### \n ⌛ Trimming video frame {start_frame} to {stop_frame}..." | |
try: | |
output_path = os.path.join(output_path, output_name) | |
trimmed_video = trim_video(video_path, output_path, start_frame, stop_frame) | |
yield trimmed_video, "### \n ✔️ Video trimmed and reloaded." | |
except Exception as e: | |
print(e) | |
yield video_path, "### \n ❌ Video trimming failed. See console for more info." | |
## ------------------------------ GRADIO GUI ------------------------------ | |
css = """ | |
footer{display:none !important} | |
""" | |
with gr.Blocks(css=css) as interface: | |
gr.Markdown("# 🗿 Swap Mukham") | |
gr.Markdown("### Face swap app based on insightface inswapper.") | |
with gr.Row(): | |
with gr.Row(): | |
with gr.Column(scale=0.4): | |
with gr.Tab("📄 Swap Condition"): | |
swap_option = gr.Dropdown( | |
swap_options_list, | |
info="Choose which face or faces in the target image to swap.", | |
multiselect=False, | |
show_label=False, | |
value=swap_options_list[0], | |
interactive=True, | |
) | |
age = gr.Number( | |
value=25, label="Value", interactive=True, visible=False | |
) | |
with gr.Tab("🎚️ Detection Settings"): | |
detect_condition_dropdown = gr.Dropdown( | |
detect_conditions, | |
label="Condition", | |
value=DETECT_CONDITION, | |
interactive=True, | |
info="This condition is only used when multiple faces are detected on source or specific image.", | |
) | |
detection_size = gr.Number( | |
label="Detection Size", value=DETECT_SIZE, interactive=True | |
) | |
detection_threshold = gr.Number( | |
label="Detection Threshold", | |
value=DETECT_THRESH, | |
interactive=True, | |
) | |
apply_detection_settings = gr.Button("Apply settings") | |
with gr.Tab("📤 Output Settings"): | |
output_directory = gr.Text( | |
label="Output Directory", | |
value=DEF_OUTPUT_PATH, | |
interactive=True, | |
) | |
output_name = gr.Text( | |
label="Output Name", value="Result", interactive=True | |
) | |
keep_output_sequence = gr.Checkbox( | |
label="Keep output sequence", value=False, interactive=True | |
) | |
with gr.Tab("🪄 Other Settings"): | |
with gr.Accordion("Advanced Mask", open=False): | |
enable_face_parser_mask = gr.Checkbox( | |
label="Enable Face Parsing", | |
value=False, | |
interactive=True, | |
) | |
mask_include = gr.Dropdown( | |
mask_regions.keys(), | |
value=MASK_INCLUDE, | |
multiselect=True, | |
label="Include", | |
interactive=True, | |
) | |
mask_soft_kernel = gr.Number( | |
label="Soft Erode Kernel", | |
value=MASK_SOFT_KERNEL, | |
minimum=3, | |
interactive=True, | |
visible = False | |
) | |
mask_soft_iterations = gr.Number( | |
label="Soft Erode Iterations", | |
value=MASK_SOFT_ITERATIONS, | |
minimum=0, | |
interactive=True, | |
) | |
blur_amount = gr.Number( | |
label="Mask Blur", | |
value=MASK_BLUR_AMOUNT, | |
minimum=0, | |
interactive=True, | |
) | |
face_scale = gr.Slider( | |
label="Face Scale", | |
minimum=0, | |
maximum=2, | |
value=1, | |
interactive=True, | |
) | |
with gr.Accordion("Crop Mask", open=False): | |
crop_top = gr.Number(label="Top", value=0, minimum=0, interactive=True) | |
crop_bott = gr.Number(label="Bottom", value=0, minimum=0, interactive=True) | |
crop_left = gr.Number(label="Left", value=0, minimum=0, interactive=True) | |
crop_right = gr.Number(label="Right", value=0, minimum=0, interactive=True) | |
enable_laplacian_blend = gr.Checkbox( | |
label="Laplacian Blending", | |
value=True, | |
interactive=True, | |
) | |
face_enhancer_name = gr.Dropdown( | |
FACE_ENHANCER_LIST, label="Face Enhancer", value="NONE", multiselect=False, interactive=True | |
) | |
source_image_input = gr.Image( | |
label="Source face", type="filepath", interactive=True | |
) | |
with gr.Box(visible=False) as specific_face: | |
for i in range(NUM_OF_SRC_SPECIFIC): | |
idx = i + 1 | |
code = "\n" | |
code += f"with gr.Tab(label='({idx})'):" | |
code += "\n\twith gr.Row():" | |
code += f"\n\t\tsrc{idx} = gr.Image(interactive=True, type='numpy', label='Source Face {idx}')" | |
code += f"\n\t\ttrg{idx} = gr.Image(interactive=True, type='numpy', label='Specific Face {idx}')" | |
exec(code) | |
distance_slider = gr.Slider( | |
minimum=0, | |
maximum=2, | |
value=0.6, | |
interactive=True, | |
label="Distance", | |
info="Lower distance is more similar and higher distance is less similar to the target face.", | |
) | |
with gr.Group(): | |
input_type = gr.Radio( | |
["Image", "Video"], | |
label="Target Type", | |
value="Video", | |
) | |
with gr.Box(visible=False) as input_image_group: | |
image_input = gr.Image( | |
label="Target Image", interactive=True, type="filepath" | |
) | |
with gr.Box(visible=True) as input_video_group: | |
vid_widget = gr.Video if USE_COLAB else gr.Text | |
video_input = gr.Video( | |
label="Target Video Path", interactive=True | |
) | |
with gr.Accordion("✂️ Trim video", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
set_slider_range_btn = gr.Button( | |
"Set frame range", interactive=True | |
) | |
show_trim_preview_btn = gr.Checkbox( | |
label="Show frame when slider change", | |
value=True, | |
interactive=True, | |
) | |
video_fps = gr.Number( | |
value=30, | |
interactive=False, | |
label="Fps", | |
visible=False, | |
) | |
start_frame = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0, | |
step=1, | |
interactive=True, | |
label="Start Frame", | |
info="", | |
) | |
end_frame = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=1, | |
step=1, | |
interactive=True, | |
label="End Frame", | |
info="", | |
) | |
trim_and_reload_btn = gr.Button( | |
"Trim and Reload", interactive=True | |
) | |
with gr.Box(visible=False) as input_directory_group: | |
direc_input = gr.Text(label="Path", interactive=True) | |
with gr.Column(scale=0.6): | |
info = gr.Markdown(value="...") | |
with gr.Row(): | |
swap_button = gr.Button("✨ Swap", variant="primary") | |
cancel_button = gr.Button("⛔ Cancel") | |
preview_image = gr.Image(label="Output", interactive=False) | |
preview_video = gr.Video( | |
label="Output", interactive=False, visible=False | |
) | |
with gr.Row(): | |
output_directory_button = gr.Button( | |
"📂", interactive=False, visible=False | |
) | |
output_video_button = gr.Button( | |
"🎬", interactive=False, visible=False | |
) | |
with gr.Column(): | |
gr.Markdown( | |
'[!["Buy Me A Coffee"](https://www.buymeacoffee.com/assets/img/custom_images/orange_img.png)](https://www.buymeacoffee.com/harisreedhar)' | |
) | |
gr.Markdown( | |
"### [Source code](https://github.com/harisreedhar/Swap-Mukham) . [Disclaimer](https://github.com/harisreedhar/Swap-Mukham#disclaimer) . [Gradio](https://gradio.app/)" | |
) | |
## ------------------------------ GRADIO EVENTS ------------------------------ | |
set_slider_range_event = set_slider_range_btn.click( | |
video_changed, | |
inputs=[video_input], | |
outputs=[start_frame, end_frame, video_fps], | |
) | |
trim_and_reload_event = trim_and_reload_btn.click( | |
fn=trim_and_reload, | |
inputs=[video_input, output_directory, output_name, start_frame, end_frame], | |
outputs=[video_input, info], | |
) | |
start_frame_event = start_frame.release( | |
fn=slider_changed, | |
inputs=[show_trim_preview_btn, video_input, start_frame], | |
outputs=[preview_image, preview_video], | |
show_progress=True, | |
) | |
end_frame_event = end_frame.release( | |
fn=slider_changed, | |
inputs=[show_trim_preview_btn, video_input, end_frame], | |
outputs=[preview_image, preview_video], | |
show_progress=True, | |
) | |
input_type.change( | |
update_radio, | |
inputs=[input_type], | |
outputs=[input_image_group, input_video_group, input_directory_group], | |
) | |
swap_option.change( | |
swap_option_changed, | |
inputs=[swap_option], | |
outputs=[age, specific_face, source_image_input], | |
) | |
apply_detection_settings.click( | |
analyse_settings_changed, | |
inputs=[detect_condition_dropdown, detection_size, detection_threshold], | |
outputs=[info], | |
) | |
src_specific_inputs = [] | |
gen_variable_txt = ",".join( | |
[f"src{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)] | |
+ [f"trg{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)] | |
) | |
exec(f"src_specific_inputs = ({gen_variable_txt})") | |
swap_inputs = [ | |
input_type, | |
image_input, | |
video_input, | |
direc_input, | |
source_image_input, | |
output_directory, | |
output_name, | |
keep_output_sequence, | |
swap_option, | |
age, | |
distance_slider, | |
face_enhancer_name, | |
enable_face_parser_mask, | |
mask_include, | |
mask_soft_kernel, | |
mask_soft_iterations, | |
blur_amount, | |
face_scale, | |
enable_laplacian_blend, | |
crop_top, | |
crop_bott, | |
crop_left, | |
crop_right, | |
*src_specific_inputs, | |
] | |
swap_outputs = [ | |
info, | |
preview_image, | |
output_directory_button, | |
output_video_button, | |
preview_video, | |
] | |
swap_event = swap_button.click( | |
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True, | |
) | |
cancel_button.click( | |
fn=stop_running, | |
inputs=None, | |
outputs=[info], | |
cancels=[ | |
swap_event, | |
trim_and_reload_event, | |
set_slider_range_event, | |
start_frame_event, | |
end_frame_event, | |
], | |
show_progress=True, | |
) | |
output_directory_button.click( | |
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None | |
) | |
output_video_button.click( | |
lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None | |
) | |
if __name__ == "__main__": | |
if USE_COLAB: | |
print("Running in colab mode") | |
interface.queue(concurrency_count=2, max_size=20).launch(share=USE_COLAB) | |