Spaces:
Configuration error
Configuration error
Embedding class fix: neighbors bug, added max_n neighbors, typing, etc.
Browse files- app.py +12 -3
- data/.gitignore +2 -0
- interfaces/.gitignore +1 -0
- interfaces/interface_WordExplorer.py +10 -4
- modules/.gitignore +1 -0
- modules/model_embbeding.py +135 -40
- modules/module_WordExplorer.py +6 -3
- modules/module_connection.py +1 -1
app.py
CHANGED
|
@@ -4,26 +4,34 @@ import pandas as pd
|
|
| 4 |
|
| 5 |
|
| 6 |
# --- Imports modules ---
|
| 7 |
-
from modules.model_embbeding import Embedding
|
|
|
|
| 8 |
|
| 9 |
# --- Imports interfaces ---
|
| 10 |
-
from interfaces.interface_WordExplorer import interface as wordExplorer_interface
|
| 11 |
from interfaces.interface_BiasWordExplorer import interface as biasWordExplorer_interface
|
| 12 |
|
|
|
|
| 13 |
# --- Tool config ---
|
| 14 |
AVAILABLE_LOGS = True # [True | False]
|
| 15 |
LANGUAGE = "spanish" # [spanish | english]
|
| 16 |
EMBEDDINGS_PATH = "data/fasttext-sbwc.100k.vec"
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# --- Init classes ---
|
| 19 |
embedding = Embedding(
|
| 20 |
path=EMBEDDINGS_PATH,
|
| 21 |
binary=EMBEDDINGS_PATH.endswith('.bin'),
|
| 22 |
limit=None,
|
| 23 |
-
randomizedPCA=False
|
|
|
|
| 24 |
)
|
|
|
|
|
|
|
| 25 |
labels = pd.read_json(f"language/{LANGUAGE}.json")["app"]
|
| 26 |
|
|
|
|
| 27 |
# --- Main App ---
|
| 28 |
INTERFACE_LIST = [
|
| 29 |
biasWordExplorer_interface(
|
|
@@ -33,6 +41,7 @@ INTERFACE_LIST = [
|
|
| 33 |
wordExplorer_interface(
|
| 34 |
embedding=embedding,
|
| 35 |
available_logs=AVAILABLE_LOGS,
|
|
|
|
| 36 |
lang=LANGUAGE),
|
| 37 |
]
|
| 38 |
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
# --- Imports modules ---
|
| 7 |
+
from modules.model_embbeding import Embedding # Fix and Updated
|
| 8 |
+
|
| 9 |
|
| 10 |
# --- Imports interfaces ---
|
| 11 |
+
from interfaces.interface_WordExplorer import interface as wordExplorer_interface # Updated
|
| 12 |
from interfaces.interface_BiasWordExplorer import interface as biasWordExplorer_interface
|
| 13 |
|
| 14 |
+
|
| 15 |
# --- Tool config ---
|
| 16 |
AVAILABLE_LOGS = True # [True | False]
|
| 17 |
LANGUAGE = "spanish" # [spanish | english]
|
| 18 |
EMBEDDINGS_PATH = "data/fasttext-sbwc.100k.vec"
|
| 19 |
+
MAX_NEIGHBORS = 20 # Updated
|
| 20 |
+
|
| 21 |
|
| 22 |
# --- Init classes ---
|
| 23 |
embedding = Embedding(
|
| 24 |
path=EMBEDDINGS_PATH,
|
| 25 |
binary=EMBEDDINGS_PATH.endswith('.bin'),
|
| 26 |
limit=None,
|
| 27 |
+
randomizedPCA=False,
|
| 28 |
+
max_neighbors=MAX_NEIGHBORS # Updated
|
| 29 |
)
|
| 30 |
+
|
| 31 |
+
# --- Init Vars ---
|
| 32 |
labels = pd.read_json(f"language/{LANGUAGE}.json")["app"]
|
| 33 |
|
| 34 |
+
|
| 35 |
# --- Main App ---
|
| 36 |
INTERFACE_LIST = [
|
| 37 |
biasWordExplorer_interface(
|
|
|
|
| 41 |
wordExplorer_interface(
|
| 42 |
embedding=embedding,
|
| 43 |
available_logs=AVAILABLE_LOGS,
|
| 44 |
+
max_neighbors=MAX_NEIGHBORS, # Updated
|
| 45 |
lang=LANGUAGE),
|
| 46 |
]
|
| 47 |
|
data/.gitignore
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
data_loader.py
|
interfaces/.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
interfaces/interface_WordExplorer.py
CHANGED
|
@@ -3,13 +3,19 @@ import pandas as pd
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
|
| 5 |
from tool_info import TOOL_INFO
|
| 6 |
-
from modules.module_connection import WordExplorerConnector
|
| 7 |
from modules.module_logsManager import HuggingFaceDatasetSaver
|
| 8 |
from examples.examples import examples_explorar_relaciones_entre_palabras
|
| 9 |
|
| 10 |
plt.rcParams.update({'font.size': 14})
|
| 11 |
|
| 12 |
-
def interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# --- Init logs ---
|
| 14 |
log_callback = HuggingFaceDatasetSaver(
|
| 15 |
available_logs=available_logs
|
|
@@ -53,10 +59,10 @@ def interface(embedding, available_logs, lang="spanish"):
|
|
| 53 |
with gr.Row():
|
| 54 |
with gr.Row():
|
| 55 |
gr.Markdown(labels["plotNeighbours"]["title"])
|
| 56 |
-
n_neighbors = gr.Slider(minimum=0,maximum=
|
| 57 |
with gr.Row():
|
| 58 |
alpha = gr.Slider(minimum=0.1,maximum=0.9, value=0.3, step=0.1,label=labels["options"]["transparency"])
|
| 59 |
-
fontsize=gr.Number(value=
|
| 60 |
with gr.Row():
|
| 61 |
btn_plot = gr.Button(labels["plot_button"])
|
| 62 |
with gr.Row():
|
|
|
|
| 3 |
import matplotlib.pyplot as plt
|
| 4 |
|
| 5 |
from tool_info import TOOL_INFO
|
| 6 |
+
from modules.module_connection import WordExplorerConnector # Updated
|
| 7 |
from modules.module_logsManager import HuggingFaceDatasetSaver
|
| 8 |
from examples.examples import examples_explorar_relaciones_entre_palabras
|
| 9 |
|
| 10 |
plt.rcParams.update({'font.size': 14})
|
| 11 |
|
| 12 |
+
def interface(
|
| 13 |
+
embedding,
|
| 14 |
+
available_logs: bool,
|
| 15 |
+
max_neighbors: int, # Updated
|
| 16 |
+
lang: str="spanish",
|
| 17 |
+
) -> gr.Blocks:
|
| 18 |
+
|
| 19 |
# --- Init logs ---
|
| 20 |
log_callback = HuggingFaceDatasetSaver(
|
| 21 |
available_logs=available_logs
|
|
|
|
| 59 |
with gr.Row():
|
| 60 |
with gr.Row():
|
| 61 |
gr.Markdown(labels["plotNeighbours"]["title"])
|
| 62 |
+
n_neighbors = gr.Slider(minimum=0,maximum=max_neighbors,step=1,label=labels["plotNeighbours"]["quantity"])
|
| 63 |
with gr.Row():
|
| 64 |
alpha = gr.Slider(minimum=0.1,maximum=0.9, value=0.3, step=0.1,label=labels["options"]["transparency"])
|
| 65 |
+
fontsize=gr.Number(value=25, label=labels["options"]["font-size"])
|
| 66 |
with gr.Row():
|
| 67 |
btn_plot = gr.Button(labels["plot_button"])
|
| 68 |
with gr.Row():
|
modules/.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
modules/model_embbeding.py
CHANGED
|
@@ -1,58 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import operator
|
| 3 |
-
import numpy as np
|
| 4 |
import pandas as pd
|
|
|
|
|
|
|
| 5 |
from numpy import dot
|
| 6 |
from gensim import matutils
|
| 7 |
-
from modules.module_ann import Ann
|
| 8 |
-
from memory_profiler import profile
|
| 9 |
-
from sklearn.neighbors import NearestNeighbors
|
| 10 |
-
from data.data_loader import load_embeddings
|
| 11 |
|
| 12 |
|
| 13 |
class Embedding:
|
| 14 |
@profile
|
| 15 |
-
def __init__(self,
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
self.path = path
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
#
|
| 20 |
self.ds = None
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
self.
|
| 24 |
-
|
| 25 |
-
# Estimate AproximateNearestNeighbors
|
| 26 |
-
self.ann = None
|
| 27 |
|
| 28 |
# Load embedding and pca dataset
|
| 29 |
-
self.__load(
|
| 30 |
|
| 31 |
-
def
|
| 32 |
-
|
|
|
|
| 33 |
|
| 34 |
-
def __load(self, binary, limit, randomizedPCA):
|
| 35 |
print(f"Preparing {os.path.basename(self.path)} embeddings...")
|
| 36 |
|
| 37 |
# --- Prepare dataset ---
|
| 38 |
-
self.ds =
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
self.embedding = self.ds['embedding'].to_list()
|
| 42 |
|
| 43 |
-
# ---
|
|
|
|
| 44 |
self.ann = Ann(
|
| 45 |
words=self.ds['word'],
|
| 46 |
vectors=self.ds['embedding'],
|
| 47 |
coord=self.ds['pca']
|
| 48 |
)
|
| 49 |
-
self.ann.init(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
|
| 55 |
-
def __getValue(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
word_id, value = None, None
|
| 57 |
|
| 58 |
if word in self:
|
|
@@ -63,30 +132,56 @@ class Embedding:
|
|
| 63 |
|
| 64 |
return value
|
| 65 |
|
| 66 |
-
def getEmbedding(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
return self.__getValue(word, 'embedding')
|
| 68 |
|
| 69 |
-
def getPCA(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
return self.__getValue(word, 'pca')
|
| 71 |
|
| 72 |
-
def
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
| 80 |
if nn_method == 'ann':
|
| 81 |
words = self.ann.get(word, n_neighbors)
|
|
|
|
| 82 |
elif nn_method == 'sklearn':
|
| 83 |
-
word_emb = self.getEmbedding(word)
|
| 84 |
-
|
| 85 |
-
words = operator.itemgetter(*
|
| 86 |
else:
|
| 87 |
words = []
|
| 88 |
return words
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
def getCosineSimilarities(self, w1, w2):
|
| 91 |
return dot(
|
| 92 |
matutils.unitvec(self.getEmbedding(w1)),
|
|
|
|
| 1 |
+
from modules.module_ann import Ann
|
| 2 |
+
from memory_profiler import profile
|
| 3 |
+
from sklearn.neighbors import NearestNeighbors
|
| 4 |
+
from sklearn.decomposition import PCA
|
| 5 |
+
from gensim.models import KeyedVectors
|
| 6 |
+
from typing import List
|
| 7 |
import os
|
| 8 |
import operator
|
|
|
|
| 9 |
import pandas as pd
|
| 10 |
+
|
| 11 |
+
import numpy as np
|
| 12 |
from numpy import dot
|
| 13 |
from gensim import matutils
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
|
| 16 |
class Embedding:
|
| 17 |
@profile
|
| 18 |
+
def __init__(self,
|
| 19 |
+
path: str,
|
| 20 |
+
binary: bool,
|
| 21 |
+
limit: int=None,
|
| 22 |
+
randomizedPCA: bool=False,
|
| 23 |
+
max_neighbors: int=20
|
| 24 |
+
) -> None:
|
| 25 |
+
|
| 26 |
+
# Embedding vars
|
| 27 |
self.path = path
|
| 28 |
+
self.limit = limit
|
| 29 |
+
self.randomizedPCA = randomizedPCA
|
| 30 |
+
self.binary = binary
|
| 31 |
+
self.max_neighbors = max_neighbors
|
| 32 |
|
| 33 |
+
# Full embedding dataset
|
| 34 |
self.ds = None
|
| 35 |
|
| 36 |
+
# Estimate NearestNeighbors
|
| 37 |
+
self.ann = None # Aproximate with Annoy method
|
| 38 |
+
self.neigh = None # Exact with Sklearn method
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Load embedding and pca dataset
|
| 41 |
+
self.__load()
|
| 42 |
|
| 43 |
+
def __load(
|
| 44 |
+
self,
|
| 45 |
+
) -> None:
|
| 46 |
|
|
|
|
| 47 |
print(f"Preparing {os.path.basename(self.path)} embeddings...")
|
| 48 |
|
| 49 |
# --- Prepare dataset ---
|
| 50 |
+
self.ds = self.__preparate(
|
| 51 |
+
self.path, self.binary, self.limit, self.randomizedPCA
|
| 52 |
+
)
|
|
|
|
| 53 |
|
| 54 |
+
# --- Estimate Nearest Neighbors
|
| 55 |
+
# Method A: Througth annoy using forest tree
|
| 56 |
self.ann = Ann(
|
| 57 |
words=self.ds['word'],
|
| 58 |
vectors=self.ds['embedding'],
|
| 59 |
coord=self.ds['pca']
|
| 60 |
)
|
| 61 |
+
self.ann.init(
|
| 62 |
+
n_trees=20, metric='dot', n_jobs=-1
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Method B: Througth Sklearn method
|
| 66 |
+
self.neigh = NearestNeighbors(
|
| 67 |
+
n_neighbors=self.max_neighbors
|
| 68 |
+
)
|
| 69 |
+
self.neigh.fit(
|
| 70 |
+
X=self.ds['embedding'].to_list()
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
def __preparate(
|
| 74 |
+
self,
|
| 75 |
+
path: str,
|
| 76 |
+
binary: bool,
|
| 77 |
+
limit: int,
|
| 78 |
+
randomizedPCA: bool
|
| 79 |
+
) -> pd.DataFrame:
|
| 80 |
+
|
| 81 |
+
if randomizedPCA:
|
| 82 |
+
pca = PCA(
|
| 83 |
+
n_components=2,
|
| 84 |
+
copy=False,
|
| 85 |
+
whiten=False,
|
| 86 |
+
svd_solver='randomized',
|
| 87 |
+
iterated_power='auto'
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
else:
|
| 91 |
+
pca = PCA(
|
| 92 |
+
n_components=2
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
print("--------> PATH:", path)
|
| 96 |
+
model = KeyedVectors.load_word2vec_format(
|
| 97 |
+
fname=path,
|
| 98 |
+
binary=binary,
|
| 99 |
+
limit=limit
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Cased Vocab
|
| 103 |
+
cased_words = model.index_to_key
|
| 104 |
+
cased_emb = model.get_normed_vectors()
|
| 105 |
+
cased_pca = pca.fit_transform(cased_emb)
|
| 106 |
+
|
| 107 |
+
df_cased = pd.DataFrame(
|
| 108 |
+
zip(
|
| 109 |
+
cased_words,
|
| 110 |
+
cased_emb,
|
| 111 |
+
cased_pca
|
| 112 |
+
),
|
| 113 |
+
columns=['word', 'embedding', 'pca']
|
| 114 |
+
)
|
| 115 |
|
| 116 |
+
df_cased['word'] = df_cased.word.apply(lambda w: w.lower())
|
| 117 |
+
df_uncased = df_cased.drop_duplicates(subset='word')
|
| 118 |
+
return df_uncased
|
| 119 |
|
| 120 |
+
def __getValue(
|
| 121 |
+
self,
|
| 122 |
+
word: str,
|
| 123 |
+
feature: str
|
| 124 |
+
):
|
| 125 |
word_id, value = None, None
|
| 126 |
|
| 127 |
if word in self:
|
|
|
|
| 132 |
|
| 133 |
return value
|
| 134 |
|
| 135 |
+
def getEmbedding(
|
| 136 |
+
self,
|
| 137 |
+
word: str
|
| 138 |
+
):
|
| 139 |
+
|
| 140 |
return self.__getValue(word, 'embedding')
|
| 141 |
|
| 142 |
+
def getPCA(
|
| 143 |
+
self,
|
| 144 |
+
word: str
|
| 145 |
+
):
|
| 146 |
+
|
| 147 |
return self.__getValue(word, 'pca')
|
| 148 |
|
| 149 |
+
def getNearestNeighbors(
|
| 150 |
+
self,
|
| 151 |
+
word: str,
|
| 152 |
+
n_neighbors: int=10,
|
| 153 |
+
nn_method: str='sklearn'
|
| 154 |
+
) -> List[str]:
|
| 155 |
+
|
| 156 |
+
assert(n_neighbors <= self.max_neighbors), f"Error: The value of the parameter 'n_neighbors:{n_neighbors}' must less than or equal to {self.max_neighbors}!."
|
| 157 |
+
|
| 158 |
if nn_method == 'ann':
|
| 159 |
words = self.ann.get(word, n_neighbors)
|
| 160 |
+
|
| 161 |
elif nn_method == 'sklearn':
|
| 162 |
+
word_emb = self.getEmbedding(word).reshape(1,-1)
|
| 163 |
+
_, nn_ids = self.neigh.kneighbors(word_emb, n_neighbors)
|
| 164 |
+
words = operator.itemgetter(*nn_ids[0])(self.ds['word'].to_list())
|
| 165 |
else:
|
| 166 |
words = []
|
| 167 |
return words
|
| 168 |
|
| 169 |
+
def __contains__(
|
| 170 |
+
self,
|
| 171 |
+
word: str
|
| 172 |
+
) -> bool:
|
| 173 |
+
|
| 174 |
+
return word in self.ds['word'].to_list()
|
| 175 |
+
|
| 176 |
+
# ToDo: Revisar estos dos métodos usados en la pestaña sesgoEnPalabras
|
| 177 |
+
# ya que ahora los embedding vienen normalizados
|
| 178 |
+
def cosineSimilarities(self, vector_1, vectors_all):
|
| 179 |
+
norm = np.linalg.norm(vector_1)
|
| 180 |
+
all_norms = np.linalg.norm(vectors_all, axis=1)
|
| 181 |
+
dot_products = dot(vectors_all, vector_1)
|
| 182 |
+
similarities = dot_products / (norm * all_norms)
|
| 183 |
+
return similarities
|
| 184 |
+
|
| 185 |
def getCosineSimilarities(self, w1, w2):
|
| 186 |
return dot(
|
| 187 |
matutils.unitvec(self.getEmbedding(w1)),
|
modules/module_WordExplorer.py
CHANGED
|
@@ -142,10 +142,13 @@ class WordExplorer:
|
|
| 142 |
processed_word_list.append(WordToPlot(word, color_dict[color], color, 1))
|
| 143 |
|
| 144 |
if n_neighbors > 0:
|
|
|
|
|
|
|
| 145 |
neighbors = self.get_neighbors(word,
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
| 149 |
for n in neighbors:
|
| 150 |
if n not in [wtp.word for wtp in processed_word_list]:
|
| 151 |
processed_word_list.append(WordToPlot(n, color_dict[color], color, n_alpha))
|
|
|
|
| 142 |
processed_word_list.append(WordToPlot(word, color_dict[color], color, 1))
|
| 143 |
|
| 144 |
if n_neighbors > 0:
|
| 145 |
+
# Updated: Con el agregado del parámetro max_neightbors, el (n_neighbors+1)
|
| 146 |
+
# hacia superar ese valor máximo y se producia una aserción
|
| 147 |
neighbors = self.get_neighbors(word,
|
| 148 |
+
# n_neighbors=n_neighbors+1,
|
| 149 |
+
n_neighbors=n_neighbors,
|
| 150 |
+
nn_method=kwargs.get('nn_method', 'sklearn')
|
| 151 |
+
)
|
| 152 |
for n in neighbors:
|
| 153 |
if n not in [wtp.word for wtp in processed_word_list]:
|
| 154 |
processed_word_list.append(WordToPlot(n, color_dict[color], color, n_alpha))
|
modules/module_connection.py
CHANGED
|
@@ -3,7 +3,7 @@ import pandas as pd
|
|
| 3 |
import gradio as gr
|
| 4 |
from abc import ABC, abstractmethod
|
| 5 |
|
| 6 |
-
from modules.module_WordExplorer import WordExplorer
|
| 7 |
from modules.module_BiasExplorer import WordBiasExplorer
|
| 8 |
|
| 9 |
class Connector(ABC):
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from abc import ABC, abstractmethod
|
| 5 |
|
| 6 |
+
from modules.module_WordExplorer import WordExplorer # Updated
|
| 7 |
from modules.module_BiasExplorer import WordBiasExplorer
|
| 8 |
|
| 9 |
class Connector(ABC):
|