import gradio import argparse import os from utils import generate from models import get_tiny_llama, response_tiny_llama from constants import css, js_code, js_light MERA_table = None TINY_LLAMA = get_tiny_llama() def giga_gen(content): res = generate(content,'auth_token.json') return res def tiny_gen(content): res = response_tiny_llama(TINY_LLAMA, content) return res def tab_arena(): with gradio.Row(): with gradio.Column(): gradio.Interface(fn=giga_gen, inputs="text", outputs="text", allow_flagging=False, title='Giga') # arena = with gradio.Column(): gradio.Interface(fn=tiny_gen, inputs="text", outputs="text", allow_flagging=False, title='TinyLlama') # arena = # arena.launch() with open("test.md", "r") as f: TEST_MD = f.read() available_models = ["GigaChat", ""] # list(model_info.keys()) def build_demo(): # global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs with gradio.Blocks(theme=gradio.themes.Base(), css=css, js=js_light) as demo: # gradio.HTML(BANNER, elem_id="banner") # gradio.Markdown(HEADER_MD.replace("{model_num}", str(len(original_dfs["-1"]))), elem_classes="markdown-text") with gradio.Tabs(elem_classes="tab-buttons") as tabs: with gradio.TabItem("🐼 MERA leaderboard", elem_id="od-benchmark-tab-table", id=0): gradio.Markdown(TEST_MD, elem_classes="markdown-text-details") # _tab_leaderboard() with gradio.TabItem("🆚 SBS by categories and criteria", elem_id="od-benchmark-tab-table", id=1): gradio.Markdown(TEST_MD, elem_classes="markdown-text-details") with gradio.TabItem("🥊 Model arena", elem_id="od-benchmark-tab-table", id=2): tab_arena() # _tab_explore() with gradio.TabItem("💪 About MERA", elem_id="od-benchmark-tab-table", id=3): gradio.Markdown(TEST_MD, elem_classes="markdown-text") # gr.Markdown(f"Last updated on **{LAST_UPDATED}** | [Link to V1-legacy](https://huggingface.co/spaces/allenai/WildBench-V1-legacy)", elem_classes="markdown-text-small") # with gr.Row(): # with gr.Accordion("📙 Citation", open=False, elem_classes="accordion-label"): # gr.Textbox( # value=CITATION_TEXT, # lines=7, # label="Copy the BibTeX snippet to cite this source", # elem_id="citation-button", # show_copy_button=True) # ).style(show_copy_button=True) return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--share", action="store_true") # parser.add_argument("--bench_table", help="Path to MERA table", default="data_dir/MERA_jun2024.jsonl") args = parser.parse_args() # data_load(args.result_file) # TYPES = ["number", "markdown", "number"] demo = build_demo() demo.launch(share=args.share, height=3000, width="110%") # share=args.share # demo = gradio.Interface(fn=gen, inputs="text", outputs="text") # demo.launch()