File size: 13,627 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import importlib

import torch
import torch.nn as nn
import torch.nn.functional as F

from imaginaire.discriminators.multires_patch import NLayerPatchDiscriminator
from imaginaire.model_utils.fs_vid2vid import get_fg_mask, pick_image
from imaginaire.utils.data import (get_paired_input_image_channel_number,
                                   get_paired_input_label_channel_number)
from imaginaire.utils.misc import get_nested_attr


class Discriminator(nn.Module):
    r"""Image and video discriminator constructor.

    Args:
        dis_cfg (obj): Discriminator part of the yaml config file.
        data_cfg (obj): Data definition part of the yaml config file
    """

    def __init__(self, dis_cfg, data_cfg):
        super().__init__()
        self.data_cfg = data_cfg
        num_input_channels = get_paired_input_label_channel_number(data_cfg)
        if num_input_channels == 0:
            num_input_channels = getattr(data_cfg, 'label_channels', 1)
        num_img_channels = get_paired_input_image_channel_number(data_cfg)
        self.num_frames_D = data_cfg.num_frames_D
        self.num_scales = get_nested_attr(dis_cfg, 'temporal.num_scales', 0)
        num_netD_input_channels = (num_input_channels + num_img_channels)
        self.use_few_shot = 'few_shot' in data_cfg.type
        if self.use_few_shot:
            num_netD_input_channels *= 2
        self.net_D = MultiPatchDiscriminator(dis_cfg.image,
                                             num_netD_input_channels)

        self.add_dis_cfg = getattr(dis_cfg, 'additional_discriminators', None)
        if self.add_dis_cfg is not None:
            for name in self.add_dis_cfg:
                add_dis_cfg = self.add_dis_cfg[name]
                num_ch = num_img_channels * (2 if self.use_few_shot else 1)
                setattr(self, 'net_D_' + name,
                        MultiPatchDiscriminator(add_dis_cfg, num_ch))

        # Temporal discriminator.
        self.num_netDT_input_channels = num_img_channels * self.num_frames_D
        for n in range(self.num_scales):
            setattr(self, 'net_DT%d' % n,
                    MultiPatchDiscriminator(dis_cfg.temporal,
                                            self.num_netDT_input_channels))
        self.has_fg = getattr(data_cfg, 'has_foreground', False)

    def forward(self, data, net_G_output, past_frames):
        r"""Discriminator forward.

        Args:
            data (dict): Input data.
            net_G_output (dict): Generator output.
            past_frames (list of tensors): Past real frames / generator outputs.
        Returns:
            (tuple):
              - output (dict): Discriminator output.
              - past_frames (list of tensors): New past frames by adding
                current outputs.
        """
        label, real_image = data['label'], data['image']
        # Only operate on the latest output frame.
        if label.dim() == 5:
            label = label[:, -1]
        if self.use_few_shot:
            # Pick only one reference image to concat with.
            ref_idx = net_G_output['ref_idx'] \
                if 'ref_idx' in net_G_output else 0
            ref_label = pick_image(data['ref_labels'], ref_idx)
            ref_image = pick_image(data['ref_images'], ref_idx)
            # Concat references with label map as discriminator input.
            label = torch.cat([label, ref_label, ref_image], dim=1)
        fake_image = net_G_output['fake_images']
        output = dict()

        # Individual frame loss.
        pred_real, pred_fake = self.discrminate_image(self.net_D, label,
                                                      real_image, fake_image)
        output['indv'] = dict()
        output['indv']['pred_real'] = pred_real
        output['indv']['pred_fake'] = pred_fake

        if 'fake_raw_images' in net_G_output and \
                net_G_output['fake_raw_images'] is not None:
            # Raw generator output loss.
            fake_raw_image = net_G_output['fake_raw_images']
            fg_mask = get_fg_mask(data['label'], self.has_fg)
            pred_real, pred_fake = self.discrminate_image(
                self.net_D, label,
                real_image * fg_mask,
                fake_raw_image * fg_mask)
            output['raw'] = dict()
            output['raw']['pred_real'] = pred_real
            output['raw']['pred_fake'] = pred_fake

        # Additional GAN loss on specific regions.
        if self.add_dis_cfg is not None:
            for name in self.add_dis_cfg:
                # Crop corresponding regions in the image according to the
                # crop function.
                add_dis_cfg = self.add_dis_cfg[name]
                file, crop_func = add_dis_cfg.crop_func.split('::')
                file = importlib.import_module(file)
                crop_func = getattr(file, crop_func)

                real_crop = crop_func(self.data_cfg, real_image, label)
                fake_crop = crop_func(self.data_cfg, fake_image, label)
                if self.use_few_shot:
                    ref_crop = crop_func(self.data_cfg, ref_image, label)
                    if ref_crop is not None:
                        real_crop = torch.cat([real_crop, ref_crop], dim=1)
                        fake_crop = torch.cat([fake_crop, ref_crop], dim=1)

                # Feed the crops to specific discriminator.
                if fake_crop is not None:
                    net_D = getattr(self, 'net_D_' + name)
                    pred_real, pred_fake = \
                        self.discrminate_image(net_D, None,
                                               real_crop, fake_crop)
                else:
                    pred_real = pred_fake = None
                output[name] = dict()
                output[name]['pred_real'] = pred_real
                output[name]['pred_fake'] = pred_fake

        # Temporal loss.
        past_frames, skipped_frames = \
            get_all_skipped_frames(past_frames, [real_image, fake_image],
                                   self.num_scales, self.num_frames_D)

        for scale in range(self.num_scales):
            real_image, fake_image = \
                [skipped_frame[scale] for skipped_frame in skipped_frames]
            pred_real, pred_fake = self.discriminate_video(real_image,
                                                           fake_image, scale)
            output['temporal_%d' % scale] = dict()
            output['temporal_%d' % scale]['pred_real'] = pred_real
            output['temporal_%d' % scale]['pred_fake'] = pred_fake

        return output, past_frames

    def discrminate_image(self, net_D, real_A, real_B, fake_B):
        r"""Discriminate individual images.

        Args:
            net_D (obj): Discriminator network.
            real_A (NxC1xHxW tensor): Input label map.
            real_B (NxC2xHxW tensor): Real image.
            fake_B (NxC2xHxW tensor): Fake image.
        Returns:
            (tuple):
              - pred_real (NxC3xH2xW2 tensor): Output of net_D for real images.
              - pred_fake (NxC3xH2xW2 tensor): Output of net_D for fake images.
        """
        if real_A is not None:
            real_AB = torch.cat([real_A, real_B], dim=1)
            fake_AB = torch.cat([real_A, fake_B], dim=1)
        else:
            real_AB, fake_AB = real_B, fake_B

        pred_real = net_D.forward(real_AB)
        pred_fake = net_D.forward(fake_AB)
        return pred_real, pred_fake

    def discriminate_video(self, real_B, fake_B, scale):
        r"""Discriminate a sequence of images.

        Args:
            real_B (NxCxHxW tensor): Real image.
            fake_B (NxCxHxW tensor): Fake image.
            scale (int): Temporal scale.
        Returns:
            (tuple):
              - pred_real (NxC2xH2xW2 tensor): Output of net_D for real images.
              - pred_fake (NxC2xH2xW2 tensor): Output of net_D for fake images.
        """
        if real_B is None:
            return None, None
        net_DT = getattr(self, 'net_DT%d' % scale)
        height, width = real_B.shape[-2:]
        real_B = real_B.view(-1, self.num_netDT_input_channels, height, width)
        fake_B = fake_B.view(-1, self.num_netDT_input_channels, height, width)

        pred_real = net_DT.forward(real_B)
        pred_fake = net_DT.forward(fake_B)
        return pred_real, pred_fake


def get_all_skipped_frames(past_frames, new_frames, t_scales, tD):
    r"""Get temporally skipped frames from the input frames.

    Args:
        past_frames (list of tensors): Past real frames / generator outputs.
        new_frames (list of tensors): Current real frame / generated output.
        t_scales (int): Temporal scale.
        tD (int): Number of frames as input to the temporal discriminator.
    Returns:
        (tuple):
          - new_past_frames (list of tensors): Past + current frames.
          - skipped_frames (list of tensors): Temporally skipped frames using
            the given t_scales.
    """
    new_past_frames, skipped_frames = [], []
    for past_frame, new_frame in zip(past_frames, new_frames):
        skipped_frame = None
        if t_scales > 0:
            past_frame, skipped_frame = \
                get_skipped_frames(past_frame, new_frame.unsqueeze(1),
                                   t_scales, tD)
        new_past_frames.append(past_frame)
        skipped_frames.append(skipped_frame)
    return new_past_frames, skipped_frames


def get_skipped_frames(all_frames, frame, t_scales, tD):
    r"""Get temporally skipped frames from the input frames.

    Args:
        all_frames (NxTxCxHxW tensor): All past frames.
        frame (Nx1xCxHxW tensor): Current frame.
        t_scales (int): Temporal scale.
        tD (int): Number of frames as input to the temporal discriminator.
    Returns:
        (tuple):
          - all_frames (NxTxCxHxW tensor): Past + current frames.
          - skipped_frames (list of NxTxCxHxW tensors): Temporally skipped
            frames.
    """
    all_frames = torch.cat([all_frames.detach(), frame], dim=1) \
        if all_frames is not None else frame
    skipped_frames = [None] * t_scales
    for s in range(t_scales):
        # Number of skipped frames between neighboring frames (e.g. 1, 3, 9,...)
        t_step = tD ** s
        # Number of frames the final triplet frames span before skipping
        # (e.g., 2, 6, 18, ...).
        t_span = t_step * (tD-1)
        if all_frames.size(1) > t_span:
            skipped_frames[s] = all_frames[:, -(t_span+1)::t_step].contiguous()

    # Maximum number of past frames we need to keep track of.
    max_num_prev_frames = (tD ** (t_scales-1)) * (tD-1)
    # Remove past frames that are older than this number.
    if all_frames.size()[1] > max_num_prev_frames:
        all_frames = all_frames[:, -max_num_prev_frames:]
    return all_frames, skipped_frames


class MultiPatchDiscriminator(nn.Module):
    r"""Multi-resolution patch discriminator.

    Args:
        dis_cfg (obj): Discriminator part of the yaml config file.
        num_input_channels (int): Number of input channels.
    """

    def __init__(self, dis_cfg, num_input_channels):
        super(MultiPatchDiscriminator, self).__init__()
        kernel_size = getattr(dis_cfg, 'kernel_size', 4)
        num_filters = getattr(dis_cfg, 'num_filters', 64)
        max_num_filters = getattr(dis_cfg, 'max_num_filters', 512)
        num_discriminators = getattr(dis_cfg, 'num_discriminators', 3)
        num_layers = getattr(dis_cfg, 'num_layers', 3)
        activation_norm_type = getattr(dis_cfg, 'activation_norm_type', 'none')
        weight_norm_type = getattr(dis_cfg, 'weight_norm_type',
                                   'spectral_norm')
        self.nets_discriminator = []
        for i in range(num_discriminators):
            net_discriminator = NLayerPatchDiscriminator(
                kernel_size,
                num_input_channels,
                num_filters,
                num_layers,
                max_num_filters,
                activation_norm_type,
                weight_norm_type)
            self.add_module('discriminator_%d' % i, net_discriminator)
            self.nets_discriminator.append(net_discriminator)

    def forward(self, input_x):
        r"""Multi-resolution patch discriminator forward.

        Args:
            input_x (N x C x H x W tensor) : Concatenation of images and
                semantic representations.
        Returns:
            (dict):
              - output (list): list of output tensors produced by individual
                patch discriminators.
              - features (list): list of lists of features produced by
                individual patch discriminators.
        """
        output_list = []
        features_list = []
        input_downsampled = input_x
        for name, net_discriminator in self.named_children():
            if not name.startswith('discriminator_'):
                continue
            output, features = net_discriminator(input_downsampled)
            output_list.append(output)
            features_list.append(features)
            input_downsampled = F.interpolate(
                input_downsampled, scale_factor=0.5, mode='bilinear',
                align_corners=True, recompute_scale_factor=True)
        output_x = dict()
        output_x['output'] = output_list
        output_x['features'] = features_list
        return output_x