import gradio as gr import cv2 import numpy as np import os from PIL import Image import torch import torch.nn.functional as F from torchvision.transforms import Compose import tempfile from gradio_imageslider import ImageSlider from depth_anything.dpt import DepthAnything from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet css = """ #img-display-container { max-height: 100vh; } #img-display-input { max-height: 80vh; } #img-display-output { max-height: 80vh; } """ DEVICE = 'cpu' encoder = 'vitl' # can also be 'vitb' or 'vitl' model = DepthAnything.from_pretrained(f"LiheYoung/depth_anything_{encoder}14").to(DEVICE).eval() title = "# Depth Anything with log" transform = Compose([ Resize( width=518, height=518, resize_target=False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ]) @torch.no_grad() def predict_depth(model, image): return model(image) with (gr.Blocks(css=css) as demo): gr.Markdown(title) with gr.Row(): input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,) raw_file = gr.File(label="16-bit raw depth (can be considered as disparity)") submit = gr.Button("Submit") def on_submit(image): original_image = image.copy() h, w = image.shape[:2] image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 image = transform({'image': image})['image'] image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) depth = predict_depth(model, image) depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16')) tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) raw_depth.save(tmp.name) # depth = (depth - depth.min()) / (depth.max() - depth.min()) *255. image_flattened = depth.view(image.size(0), -1) # 计算分位数阈值 lower_quantile = torch.quantile(image_flattened, 0.05, dim=1, keepdim=True) upper_quantile = torch.quantile(image_flattened, 0.95, dim=1, keepdim=True) # 应用阈值,去除极值 clamped_image_flattened = torch.clamp(image_flattened, lower_quantile, upper_quantile) # 恢复图像到原始形状 clamped_image = clamped_image_flattened.view_as(depth) epsilon = 1e-7 # 一个小的正值,以避免计算log(0) log_image = torch.log(clamped_image + epsilon) depth = (log_image - log_image.min()) / (log_image.max() - log_image.min()) *255. depth = depth.cpu().numpy().astype(np.uint8) return [(original_image, depth), tmp.name] submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, raw_file]) if __name__ == '__main__': demo.queue().launch()