import streamlit as st from streamlit_extras.switch_page_button import switch_page st.title("MiniGemini") st.success("""[Original tweet](https://x.com/mervenoyann/status/1783864388249694520) (April 26, 2024)""", icon="ℹ️") st.markdown(""" """) st.markdown(""" MiniGemini is the coolest VLM, let's explain 🧶 """) st.markdown(""" """) st.image("pages/MiniGemini/image_1.jpeg", use_column_width=True) st.markdown(""" """) st.markdown("""MiniGemini is a vision language model that understands both image and text and also generates text and an image that goes best with the context! 🤯 """) st.markdown(""" """) st.image("pages/MiniGemini/image_2.jpeg", use_column_width=True) st.markdown(""" """) st.markdown(""" This model has two image encoders (one CNN and one ViT) in parallel to capture the details in the images I saw the same design in DocOwl 1.5 then it has a decoder to output text and also a prompt to be sent to SDXL for image generation (which works very well!)""") st.markdown(""" """) st.image("pages/MiniGemini/image_3.jpeg", use_column_width=True) st.markdown(""" """) st.markdown("""They adopt CLIP's ViT for low resolution visual embedding encoder and a CNN-based one for high resolution image encoding (precisely a pre-trained ConvNeXt) """) st.markdown(""" """) st.image("pages/MiniGemini/image_4.jpeg", use_column_width=True) st.markdown(""" """) st.markdown("""Thanks to the second encoder it can grasp details in images, which also comes in handy for e.g. document tasks (but see below the examples are mindblowing IMO) """) st.markdown(""" """) st.image("pages/MiniGemini/image_5.jpeg", use_column_width=True) st.markdown(""" """) st.markdown("""According to their reporting the model performs very well across many benchmarks compared to LLaVA 1.5 and Gemini Pro """) st.markdown(""" """) st.image("pages/MiniGemini/image_6.png", use_column_width=True) st.markdown(""" """) st.info(""" Resources: - [Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models](https://huggingface.co/papers/2403.18814) by Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng Liu, Jiaya Jia (2024) - [GitHub](https://github.com/dvlab-research/MGM) - [Link to Model Repository](https://huggingface.co/YanweiLi/MGM-13B-HD)""", icon="📚") st.markdown(""" """) st.markdown(""" """) st.markdown(""" """) col1, col2, col3 = st.columns(3) with col1: if st.button('Previous paper', use_container_width=True): switch_page("UDOP") with col2: if st.button('Home', use_container_width=True): switch_page("Home") with col3: if st.button('Next paper', use_container_width=True): switch_page("ColPali")