"""Gradio app for GeoCalib inference.""" from copy import deepcopy from time import time import gradio as gr import numpy as np import spaces import torch import matplotlib.pyplot as plt from geocalib import logger, viz2d from geocalib.camera import camera_models from geocalib.extractor import GeoCalib from geocalib.perspective_fields import get_perspective_field from geocalib.utils import rad2deg # flake8: noqa # mypy: ignore-errors description = """

GeoCalib 📸
Single-image Calibration with Geometric Optimization

Alexander Veicht · Paul-Edouard Sarlin · Philipp Lindenberger · Marc Pollefeys

ECCV 2024

Paper | Code | Colab

## Getting Started GeoCalib accurately estimates the camera intrinsics and gravity direction from a single image by combining geometric optimization with deep learning. To get started, upload an image or select one of the examples below. You can choose between different camera models and visualize the calibration results. """ example_images = [ ["assets/pinhole-church.jpg"], ["assets/pinhole-garden.jpg"], ["assets/fisheye-skyline.jpg"], ["assets/fisheye-dog-pool.jpg"], ] device = "cuda" if torch.cuda.is_available() else "cpu" model = GeoCalib().to(device) def format_output(results): camera, gravity = results["camera"], results["gravity"] vfov = rad2deg(camera.vfov) roll, pitch = rad2deg(gravity.rp).unbind(-1) txt = "Estimated parameters:\n" txt += f"Roll: {roll.item():.2f}° (± {rad2deg(results['roll_uncertainty']).item():.2f})°\n" txt += f"Pitch: {pitch.item():.2f}° (± {rad2deg(results['pitch_uncertainty']).item():.2f})°\n" txt += f"vFoV: {vfov.item():.2f}° (± {rad2deg(results['vfov_uncertainty']).item():.2f})°\n" txt += ( f"Focal: {camera.f[0, 1].item():.2f} px (± {results['focal_uncertainty'].item():.2f} px)\n" ) if hasattr(camera, "k1"): txt += f"K1: {camera.k1[0].item():.2f}\n" return txt @spaces.GPU(duration=10) def inference(img, camera_model): out = model.calibrate(img.to(device), camera_model=camera_model) save_keys = ["camera", "gravity"] + [ f"{k}_uncertainty" for k in ["roll", "pitch", "vfov", "focal"] ] res = {k: v.cpu() for k, v in out.items() if k in save_keys} # not converting to numpy results in gpu abort res["up_confidence"] = out["up_confidence"].cpu().numpy() res["latitude_confidence"] = out["latitude_confidence"].cpu().numpy() return res def process_results( image_path, camera_model, plot_up, plot_up_confidence, plot_latitude, plot_latitude_confidence, plot_undistort, ): """Process the image and return the calibration results.""" if image_path is None: raise gr.Error("Please upload an image first.") img = model.load_image(image_path) start = time() inference_result = inference(img, camera_model) logger.info(f"Calibration took {time() - start:.2f} sec. ({camera_model})") inference_result["image"] = img.cpu() if inference_result is None: return ("", np.ones((128, 256, 3)), None) plot_img = update_plot( inference_result, plot_up, plot_up_confidence, plot_latitude, plot_latitude_confidence, plot_undistort, ) return format_output(inference_result), plot_img, inference_result def update_plot( inference_result, plot_up, plot_up_confidence, plot_latitude, plot_latitude_confidence, plot_undistort, ): """Update the plot based on the selected options.""" if inference_result is None: gr.Error("Please calibrate an image first.") return np.ones((128, 256, 3)) camera, gravity = inference_result["camera"], inference_result["gravity"] img = inference_result["image"].permute(1, 2, 0).numpy() if plot_undistort: if not hasattr(camera, "k1"): return img return camera.undistort_image(inference_result["image"][None])[0].permute(1, 2, 0).numpy() up, lat = get_perspective_field(camera, gravity) fig = viz2d.plot_images([img], pad=0) ax = fig.get_axes() if plot_up: viz2d.plot_vector_fields([up[0]], axes=[ax[0]]) if plot_latitude: viz2d.plot_latitudes([lat[0, 0]], axes=[ax[0]]) if plot_up_confidence: viz2d.plot_confidences([torch.tensor(inference_result["up_confidence"][0])], axes=[ax[0]]) if plot_latitude_confidence: viz2d.plot_confidences( [torch.tensor(inference_result["latitude_confidence"][0])], axes=[ax[0]] ) fig.canvas.draw() img = np.array(fig.canvas.renderer.buffer_rgba()) plt.close() return img # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown(description) with gr.Row(): with gr.Column(): gr.Markdown("""## Input Image""") image_path = gr.Image(label="Upload image to calibrate", type="filepath") choice_input = gr.Dropdown( choices=list(camera_models.keys()), label="Choose a camera model.", value="pinhole" ) submit_btn = gr.Button("Calibrate 📸") gr.Examples(examples=example_images, inputs=[image_path, choice_input]) with gr.Column(): gr.Markdown("""## Results""") image_output = gr.Image(label="Calibration Results") gr.Markdown("### Plot Options") plot_undistort = gr.Checkbox( label="undistort", value=False, info="Undistorted image " + "(this is only available for models with distortion " + "parameters and will overwrite other options).", ) with gr.Row(): plot_up = gr.Checkbox(label="up-vectors", value=True) plot_up_confidence = gr.Checkbox(label="up confidence", value=False) plot_latitude = gr.Checkbox(label="latitude", value=True) plot_latitude_confidence = gr.Checkbox(label="latitude confidence", value=False) gr.Markdown("### Calibration Results") text_output = gr.Textbox(label="Estimated parameters", type="text", lines=5) # Define the action when the button is clicked inference_state = gr.State() plot_inputs = [ inference_state, plot_up, plot_up_confidence, plot_latitude, plot_latitude_confidence, plot_undistort, ] submit_btn.click( fn=process_results, inputs=[image_path, choice_input] + plot_inputs[1:], outputs=[text_output, image_output, inference_state], ) # Define the action when the plot checkboxes are clicked plot_up.change(fn=update_plot, inputs=plot_inputs, outputs=image_output) plot_up_confidence.change(fn=update_plot, inputs=plot_inputs, outputs=image_output) plot_latitude.change(fn=update_plot, inputs=plot_inputs, outputs=image_output) plot_latitude_confidence.change(fn=update_plot, inputs=plot_inputs, outputs=image_output) plot_undistort.change(fn=update_plot, inputs=plot_inputs, outputs=image_output) # Launch the app demo.launch()