import requests import json class VectaraQuery(): def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str], prompt_name: str = None): self.customer_id = customer_id self.corpus_ids = corpus_ids self.api_key = api_key self.prompt_name = prompt_name if prompt_name else "vectara-experimental-summary-ext-2023-12-11-sml" self.conv_id = None def get_body(self, query_str: str): corpora_key_list = [{ 'customer_id': self.customer_id, 'corpus_id': corpus_id, 'lexical_interpolation_config': {'lambda': 0.005} } for corpus_id in self.corpus_ids ] return { 'query': [ { 'query': query_str, 'start': 0, 'numResults': 50, 'corpusKey': corpora_key_list, 'context_config': { 'sentences_before': 2, 'sentences_after': 2, 'start_tag': "%START_SNIPPET%", 'end_tag': "%END_SNIPPET%", }, 'rerankingConfig': { 'rerankerId': 272725719, }, 'summary': [ { 'responseLang': 'eng', 'maxSummarizedResults': 10, 'summarizerPromptName': self.prompt_name, 'chat': { 'store': True, 'conversationId': self.conv_id }, 'citationParams': { "style": "NONE", } } ] } ] } def get_headers(self): return { "Content-Type": "application/json", "Accept": "application/json", "customer-id": self.customer_id, "x-api-key": self.api_key, "grpc-timeout": "60S" } def submit_query(self, query_str: str): endpoint = f"https://api.vectara.io/v1/query" body = self.get_body(query_str) response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers()) if response.status_code != 200: print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") return "Sorry, something went wrong in my brain. Please try again later." res = response.json() summary = res['responseSet'][0]['summary'][0]['text'] chat = res['responseSet'][0]['summary'][0].get('chat', None) if chat and chat['status'] is not None: st_code = chat['status'] print(f"Chat query failed with code {st_code}") if st_code == 'RESOURCE_EXHAUSTED': self.conv_id = None return 'Sorry, Vectara chat turns exceeds plan limit.' return 'Sorry, something went wrong in my brain. Please try again later.' self.conv_id = chat['conversationId'] if chat else None return summary def submit_query_streaming(self, query_str: str): endpoint = "https://api.vectara.io/v1/stream-query" body = self.get_body(query_str) response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True) if response.status_code != 200: print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}") return "Sorry, something went wrong in my brain. Please try again later." chunks = [] for line in response.iter_lines(): if line: # filter out keep-alive new lines data = json.loads(line.decode('utf-8')) res = data['result'] response_set = res['responseSet'] if response_set is None: # grab next chunk and yield it as output summary = res.get('summary', None) if summary is None or len(summary)==0: continue else: chat = summary.get('chat', None) if chat and chat.get('status', None): st_code = chat['status'] print(f"Chat query failed with code {st_code}") if st_code == 'RESOURCE_EXHAUSTED': self.conv_id = None return 'Sorry, Vectara chat turns exceeds plan limit.' return 'Sorry, something went wrong in my brain. Please try again later.' conv_id = chat.get('conversationId', None) if chat else None if conv_id: self.conv_id = conv_id chunk = summary['text'] chunks.append(chunk) yield chunk if summary['done']: break return ''.join(chunks)