from ultralytics import YOLO from huggingface_hub import hf_hub_download import gradio as gr import numpy as np from PIL import Image import pytesseract # Load YOLO model from HuggingFace repo_config = dict( repo_id="arnabdhar/YOLOv8-nano-aadhar-card", # Ensure the repo is accessible filename="model.pt", local_dir="./models" ) model = YOLO(hf_hub_download(**repo_config)) # Get id-to-label mapping id2label = model.names def predict(image): try: image_np = np.array(image) detections = model.predict(image_np)[0] results = [] for box, confidence, class_id in zip(detections.xyxy, detections.confidence, detections.class_id): x1, y1, x2, y2 = map(int, box) label = id2label[class_id] # Crop the detected region cropped_region = image_np[y1:y2, x1:x2] # Perform OCR on the cropped region ocr_text = pytesseract.image_to_string(cropped_region, config='--psm 6') results.append(f"Detected {label}: {ocr_text.strip()} with confidence {confidence:.2f}") return "\n".join(results) # Return as a single string for easier display in Gradio except Exception as e: return f"Error: {str(e)}" # Basic error handling # Create Gradio interface iface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="text") iface.launch()