import streamlit as st from transformers import AutoModel, AutoTokenizer import os import base64 import io import uuid import shutil from pathlib import Path import time import tempfile model_name = "srimanth-d/GOT_CPU" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModel.from_pretrained(model_name, trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) model = model.eval() UPLOAD_FOLDER = "./uploads" RESULTS_FOLDER = "./results" for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: if not os.path.exists(folder): os.makedirs(folder) def image_to_base64(image): buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode() # Cleanup function for removing old files def cleanup_old_files(): current_time = time.time() for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: for file_path in Path(folder).glob('*'): if current_time - file_path.stat().st_mtime > 3600: # 1 hour file_path.unlink() # Function to search and highlight keywords in text def search_in_text(text, keywords): """Searches for keywords within the text and highlights matches.""" if not keywords: return text highlighted_text = text for keyword in keywords.split(): highlighted_text = highlighted_text.replace(keyword, f"{keyword}") return highlighted_text # OCR processing function def run_GOT(image, got_mode, fine_grained_mode="", ocr_color="", ocr_box=""): unique_id = str(uuid.uuid4()) image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") shutil.copy(image, image_path) try: if got_mode == "plain texts OCR": res = model.chat(tokenizer, image_path, ocr_type='ocr') return res, None elif got_mode == "format texts OCR": res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif got_mode == "plain multi-crop OCR": res = model.chat_crop(tokenizer, image_path, ocr_type='ocr') return res, None elif got_mode == "format multi-crop OCR": res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) elif got_mode == "plain fine-grained OCR": res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color) return res, None elif got_mode == "format fine-grained OCR": res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path) res_markdown = res if "format" in got_mode and os.path.exists(result_path): with open(result_path, 'r') as f: html_content = f.read() encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') iframe_src = f"data:text/html;base64,{encoded_html}" iframe = f'' download_link = f'Download Full Result' return res_markdown, f"{download_link}
{iframe}" else: return res_markdown, None except Exception as e: return f"Error: {str(e)}", None finally: if os.path.exists(image_path): os.remove(image_path) # Streamlit interface st.title("GOT OCR 2.0 Model") st.markdown(""" Upload your image below and select your preferred mode. Note that more characters may increase wait times. - **Plain Texts OCR & Format Texts OCR:** Use these modes for basic image-level OCR. Format Text OCR is preferred for better results. - **Plain Multi-Crop OCR & Format Multi-Crop OCR:** Ideal for images with complex content, offering higher-quality results. - **Plain Fine-Grained OCR & Format Fine-Grained OCR:** These modes allow you to specify fine-grained regions on the image for more flexible OCR. Regions can be defined by coordinates or colors (red, blue, green, black or white). """) uploaded_image = st.file_uploader("Upload your image", type=["png", "jpg", "jpeg"]) got_mode = st.selectbox("Choose OCR mode", [ "plain texts OCR", "format texts OCR", "plain multi-crop OCR", "format multi-crop OCR", "plain fine-grained OCR", "format fine-grained OCR" ]) if "fine-grained" in got_mode: ocr_box = st.text_input("Input OCR box [x1,y1,x2,y2]") ocr_color = st.selectbox("Choose OCR color", ["red", "green", "blue", "black", "white"]) else: ocr_box = "" ocr_color = "" # Maintain state for OCR result if 'ocr_result' not in st.session_state: st.session_state.ocr_result = None if 'html_result' not in st.session_state: st.session_state.html_result = None if st.button("Run OCR"): if uploaded_image: with tempfile.NamedTemporaryFile(delete=False) as temp: temp.write(uploaded_image.read()) ocr_result, html_result = run_GOT(temp.name, got_mode, ocr_box=ocr_box, ocr_color=ocr_color) st.session_state.ocr_result = ocr_result st.session_state.html_result = html_result st.text_area("OCR Result", ocr_result) else: st.warning("Please upload an image.") # Display the OCR result if it has been set if st.session_state.ocr_result: st.text_area("OCR Result", st.session_state.ocr_result,key="display_area") # Keyword search functionality keywords = st.text_input("Enter keywords for highlighting",key="keyword_input") if keywords: highlighted_text = search_in_text(st.session_state.ocr_result, keywords) st.markdown(highlighted_text, unsafe_allow_html=True) if st.session_state.html_result: st.markdown(st.session_state.html_result, unsafe_allow_html=True) if __name__ == "__main__": cleanup_old_files()