import os import requests from llama_cpp import Llama # Create the directory if it doesn't exist local_dir = "models" os.makedirs(local_dir, exist_ok=True) # Specify the filename for the model filename = "unsloth.Q4_K_M.gguf" model_path = os.path.join(local_dir, filename) # Function to download the model file def download_model(repo_id, filename, save_path): # Construct the URL for the model file url = f"https://huggingface.co/{repo_id}/resolve/main/{filename}" # Download the model file response = requests.get(url) if response.status_code == 200: with open(save_path, 'wb') as f: f.write(response.content) print(f"Model downloaded to {save_path}") else: print(f"Failed to download model: {response.status_code}") # Download the model if it doesn't exist if not os.path.exists(model_path): download_model("PurpleAILAB/Llama3.2-3B-uncensored-SQLi-Q4_K_M-GGUF", filename, model_path) # Load the model from the specified path llm = Llama.from_pretrained( repo_id="PurpleAILAB/Llama3.2-3B-uncensored-SQLi-Q4_K_M-GGUF", filename=model_path, ) # Create a chat completion response = llm.create_chat_completion( messages=[ { "role": "user", "content": "What is the capital of France?" } ] ) # Print the response print(response)