Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,22 @@ import os
|
|
6 |
import uuid
|
7 |
import requests
|
8 |
import logging
|
9 |
-
|
10 |
|
11 |
# Configure logging
|
12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Create the directory if it doesn't exist
|
15 |
local_dir = "models"
|
16 |
os.makedirs(local_dir, exist_ok=True)
|
@@ -35,7 +46,7 @@ def download_model(repo_id, filename, save_path):
|
|
35 |
|
36 |
# Download the model if it doesn't exist
|
37 |
if not os.path.exists(model_path):
|
38 |
-
download_model("PurpleAILAB/Llama3.2-3B-uncensored-SQLi-Q4_K_M-GGUF", filename
|
39 |
|
40 |
def respond(
|
41 |
message,
|
@@ -55,7 +66,7 @@ def respond(
|
|
55 |
# Load the model with the maximum context length and control the maximum tokens in the response
|
56 |
llm = Llama(
|
57 |
model_path=model_path,
|
58 |
-
n_ctx=
|
59 |
max_tokens=512 # Control the maximum number of tokens generated in the response
|
60 |
)
|
61 |
|
|
|
6 |
import uuid
|
7 |
import requests
|
8 |
import logging
|
9 |
+
import subprocess
|
10 |
|
11 |
# Configure logging
|
12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
|
14 |
+
# Function to install requirements
|
15 |
+
def install_requirements():
|
16 |
+
try:
|
17 |
+
subprocess.check_call([os.sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
|
18 |
+
logging.info("Requirements installed successfully.")
|
19 |
+
except subprocess.CalledProcessError as e:
|
20 |
+
logging.error(f"Failed to install requirements: {e}")
|
21 |
+
|
22 |
+
# Install requirements
|
23 |
+
install_requirements()
|
24 |
+
|
25 |
# Create the directory if it doesn't exist
|
26 |
local_dir = "models"
|
27 |
os.makedirs(local_dir, exist_ok=True)
|
|
|
46 |
|
47 |
# Download the model if it doesn't exist
|
48 |
if not os.path.exists(model_path):
|
49 |
+
download_model("PurpleAILAB/Llama3.2-3B-uncensored-SQLi-Q4_K_M-GGUF", filename)
|
50 |
|
51 |
def respond(
|
52 |
message,
|
|
|
66 |
# Load the model with the maximum context length and control the maximum tokens in the response
|
67 |
llm = Llama(
|
68 |
model_path=model_path,
|
69 |
+
n_ctx=5000, # Set the maximum context length
|
70 |
max_tokens=512 # Control the maximum number of tokens generated in the response
|
71 |
)
|
72 |
|