userlocallm commited on
Commit
064bf6d
·
verified ·
1 Parent(s): 500516e

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -3
app.py CHANGED
@@ -6,11 +6,22 @@ import os
6
  import uuid
7
  import requests
8
  import logging
9
- from llama_cpp import Llama
10
 
11
  # Configure logging
12
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
13
 
 
 
 
 
 
 
 
 
 
 
 
14
  # Create the directory if it doesn't exist
15
  local_dir = "models"
16
  os.makedirs(local_dir, exist_ok=True)
@@ -35,7 +46,7 @@ def download_model(repo_id, filename, save_path):
35
 
36
  # Download the model if it doesn't exist
37
  if not os.path.exists(model_path):
38
- download_model("PurpleAILAB/Llama3.2-3B-uncensored-SQLi-Q4_K_M-GGUF", filename, model_path)
39
 
40
  def respond(
41
  message,
@@ -55,7 +66,7 @@ def respond(
55
  # Load the model with the maximum context length and control the maximum tokens in the response
56
  llm = Llama(
57
  model_path=model_path,
58
- n_ctx=5072, # Set the maximum context length
59
  max_tokens=512 # Control the maximum number of tokens generated in the response
60
  )
61
 
 
6
  import uuid
7
  import requests
8
  import logging
9
+ import subprocess
10
 
11
  # Configure logging
12
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
13
 
14
+ # Function to install requirements
15
+ def install_requirements():
16
+ try:
17
+ subprocess.check_call([os.sys.executable, '-m', 'pip', 'install', '-r', 'requirements.txt'])
18
+ logging.info("Requirements installed successfully.")
19
+ except subprocess.CalledProcessError as e:
20
+ logging.error(f"Failed to install requirements: {e}")
21
+
22
+ # Install requirements
23
+ install_requirements()
24
+
25
  # Create the directory if it doesn't exist
26
  local_dir = "models"
27
  os.makedirs(local_dir, exist_ok=True)
 
46
 
47
  # Download the model if it doesn't exist
48
  if not os.path.exists(model_path):
49
+ download_model("PurpleAILAB/Llama3.2-3B-uncensored-SQLi-Q4_K_M-GGUF", filename)
50
 
51
  def respond(
52
  message,
 
66
  # Load the model with the maximum context length and control the maximum tokens in the response
67
  llm = Llama(
68
  model_path=model_path,
69
+ n_ctx=5000, # Set the maximum context length
70
  max_tokens=512 # Control the maximum number of tokens generated in the response
71
  )
72