from turtle import title import requests from io import BytesIO import gradio as gr from transformers import pipeline import numpy as np from PIL import Image import spaces pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip") images="dog.jpg" @spaces.GPU def shot(input, labels_text): # Check if the input is a URL or an uploaded image if isinstance(input, str) and (input.startswith("http://") or input.startswith("https://")): # Input is a URL response = requests.get(input) PIL_image = Image.open(BytesIO(response.content)).convert('RGB') else: # Input is an uploaded image PIL_image = Image.fromarray(np.uint8(input)).convert('RGB') # Split labels into a list labels = labels_text.split(",") # Perform the zero-shot image classification res = pipe(images=PIL_image, candidate_labels=labels, hypothesis_template="This is a photo of a {}") # Return the classification results as a dictionary return {dic["label"]: dic["score"] for dic in res} # Define the Gradio interface iface = gr.Interface( fn=shot, inputs=[ gr.inputs.Textbox(label="Image URL (starting with http/https) or Upload Image"), "text" ], outputs="label", examples=[ ["https://example.com/dog.jpg", "dog,cat,bird"], ["https://example.com/germany.jpg", "germany,belgium,colombia"], ["https://example.com/colombia.jpg", "germany,belgium,colombia"] ], description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.", title="Zero-shot Image Classification" ) # Launch the interface iface.launch()