import json import spaces import requests import numpy as np import gradio as gr from PIL import Image from io import BytesIO from turtle import title from transformers import pipeline import ast pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip") file_path = 'config.json' # Open and read the JSON file with open(file_path, 'r') as file: data = json.load(file) COLOURS_DICT = data['color_mapping'] def shot(input, category): subColour,mainColour,score = get_colour(ast.literal_eval(str(input)),category) return subColour,mainColour,score @spaces.GPU def get_colour(image_urls, category): colourLabels = list(COLOURS_DICT.keys()) for i in range(len(colourLabels)): colourLabels[i] = colourLabels[i] + " clothing: " + category responses = pipe(image_urls, candidate_labels=colourLabels) # Get the most common colour mainColour = responses[0][0]['label'].split(" clothing:")[0] if mainColour not in COLOURS_DICT: return None, None, None # Add category to the end of each label labels = COLOURS_DICT[mainColour] for i in range(len(labels)): labels[i] = labels[i] + " clothing: " + category # Run pipeline in one go responses = pipe(image_urls, candidate_labels=labels) subColour = responses[0][0]['label'].split(" clothing:")[0] return subColour, mainColour, responses[0][0]['score'] # Define the Gradio interface with the updated components iface = gr.Interface( fn=shot, inputs=[ gr.Textbox(label="Image URLs (starting with http/https) comma seperated "), gr.Textbox(label="Category") ], outputs=gr.Label(), description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.", title="Full product flow" ) # Launch the interface iface.launch()