from turtle import title import requests from io import BytesIO import gradio as gr from transformers import pipeline import numpy as np from PIL import Image import spaces pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip") images="dog.jpg" @spaces.GPU def shot(input, labels_text): if isinstance(input, str) and (input.startswith("http://") or input.startswith("https://")): # Input is a URL response = requests.get(input) PIL_image = Image.open(BytesIO(response.content)).convert('RGB') else: # Input is an uploaded image PIL_image = Image.fromarray(np.uint8(input)).convert('RGB') labels = labels_text.split(",") res = pipe(images=PIL_image, candidate_labels=labels, hypothesis_template="This is a photo of a {}") return {dic["label"]: dic["score"] for dic in res} # Define the Gradio interface with the updated components iface = gr.Interface( fn=shot, inputs=[ gr.Textbox(label="Image URL (starting with http/https) or Upload Image"), gr.Textbox(label="Labels (comma-separated)") ], outputs=gr.Label(), description="Add an image URL (starting with http/https) or upload a picture, and provide a list of labels separated by commas.", title="Zero-shot Image Classification" ) # Launch the interface iface.launch()