import ast import copy import json import re import string from difflib import get_close_matches from typing import Any, Dict import numpy as np from .deprecation_utils import deprecation from .error_utils import Documentation, UnitxtError from .operator import MultiStreamOperator from .operators import FieldOperator, InstanceFieldOperator from .settings_utils import get_constants from .type_utils import isoftype constants = get_constants() class PostProcess(MultiStreamOperator): operator: InstanceFieldOperator process_prediction: bool = True process_references: bool = True def prepare(self): super().prepare() if not isoftype(self.operator, InstanceFieldOperator): raise UnitxtError( f"PostProcess requires operator field to be of type InstanceFieldOperator. Got object of type <{type(self.operator).__name__}>.", Documentation.POST_PROCESSORS, ) self.prediction_operator = copy.copy(self.operator) self.prediction_operator.field = "prediction" self.references_operator = copy.copy(self.operator) self.references_operator.field = "references" self.references_operator.process_every_value = True self.references_operator.dont_apply_to_streams = [constants.inference_stream] def process(self, multi_stream): if self.process_prediction: multi_stream = self.prediction_operator(multi_stream) if self.process_references: multi_stream = self.references_operator(multi_stream) return multi_stream class ToString(FieldOperator): def process_value(self, text: Any) -> Any: return str(text) class ToStringStripped(FieldOperator): def process_value(self, text: Any) -> Any: return str(text).strip() class SplitStrip(FieldOperator): delimiter: str = " " strip_every_element: bool = False def process_value(self, text: Any) -> Any: return [ x.strip() if self.strip_every_element else x for x in text.split(self.delimiter) ] class ToListByComma(SplitStrip): delimiter = "," strip_every_element = True class ToListByCommaSpace(SplitStrip): delimiter = ", " strip_every_element = True class RegexParser(FieldOperator): """A processor that uses regex in order to parse a string.""" regex: str termination_regex: str = None def process_value(self, text: Any) -> Any: if self.termination_regex is not None and re.fullmatch( self.termination_regex, text ): return [] return re.findall(self.regex, text) class ExtractWithRegex(RegexParser): def process_value(self, text: Any) -> Any: matches = super().process_value(text) if matches: return matches[0] return "" class ListToEmptyEntitiesTuples(FieldOperator): def process_value(self, lst: Any) -> Any: try: return [(str(item), "") for item in lst] except json.JSONDecodeError: return [] class DictOfListsToPairs(FieldOperator): position_key_before_value: bool = True def process_value(self, obj: Any) -> Any: try: result = [] for key, values in obj.items(): for value in values: assert isinstance(value, str) pair = ( (key, value) if self.position_key_before_value else (value, key) ) result.append(pair) return result except: return [] class TakeFirstNonEmptyLine(FieldOperator): def process_value(self, text: Any) -> Any: parts = str(text).strip().split("\n") if len(parts) == 0: return "" return parts[0].strip() class TakeLastNonEmptyLine(FieldOperator): def process_value(self, text: Any) -> Any: parts = str(text).strip().split("\n") if len(parts) == 0: return "" return parts[-1].strip() class ConvertToBoolean(FieldOperator): def process_value(self, text: Any) -> Any: clean_instance = str(text).strip().lower() if any(w in clean_instance for w in ["no", "not", "wrong", "false"]): return "FALSE" if any(w in clean_instance for w in ["yes", "right", "correct", "true"]): return "TRUE" return "OTHER" class LowerCaseTillPunc(FieldOperator): def process_value(self, text: Any) -> Any: non_empty_line = text.lower() match = re.search(r"[.,!?;]", non_empty_line) if match: # Extract text up to the first punctuation non_empty_line = non_empty_line[: match.start()] return non_empty_line class Lower(FieldOperator): def process_value(self, text: Any) -> Any: return text.lower() class Upper(FieldOperator): def process_value(self, text: Any) -> Any: return str(text).upper() @deprecation("2.0.0", alternative=Lower) class LowerCase(Lower): pass class Capitalize(FieldOperator): def process_value(self, text: Any) -> Any: return text.capitalize() class GetStringAfter(FieldOperator): substring: str def process_value(self, text: Any) -> Any: return text.split(self.substring, 1)[-1].strip() class MatchClosestOption(InstanceFieldOperator): options_field: str = "options" def process_instance_value(self, value: Any, instance: Dict[str, Any]): options = instance["task_data"][self.options_field] return get_close_matches(value, options, n=1, cutoff=0.0)[0] def process_instance_value(self, value, instance): options = instance[self.options_field] # Get the closest match; n=1 returns the single closest match closest_match = get_close_matches(value, options, n=1, cutoff=0) return closest_match[0] if closest_match else None class Substring(FieldOperator): begin: int = 0 end: int = None def process_value(self, text: Any) -> Any: if self.end is None: return text[self.begin :] return text[self.begin : self.end] class FirstCharacter(FieldOperator): def process_value(self, text: Any) -> Any: match = re.search(r"\s*(\w)", text) if match: return match.groups(0)[0] return "" class TakeFirstWord(FieldOperator): def process_value(self, text: Any) -> Any: match = re.search(r"([-]*[0-9]+(\.([0-9]+))*)|([\w]+)", text) if match: return text[match.start() : match.end()] return "" class YesNoToInt(FieldOperator): def process_value(self, text: Any) -> Any: if text == "yes": return "1" if text == "no": return "0" return text class YesToOneElseZero(FieldOperator): def process_value(self, text: Any) -> Any: if text == "yes": return "1" return "0" class StrToFloatFormat(FieldOperator): def process_value(self, text: Any) -> Any: try: return str(float(text)) except Exception: return str(text) class ToYesOrNone(FieldOperator): def process_value(self, text: Any) -> Any: if text == "yes": return "yes" return "none" class StanceToProCon(FieldOperator): def process_value(self, text: Any) -> Any: if text == "positive": return "PRO" if text in ["negative", "suggestion"]: return "CON" return "none" class StringEquals(FieldOperator): string: str def process_value(self, text: Any) -> Any: if "not " + self.string.lower() in text.lower(): return "not " + self.string.lower() if self.string.lower() in text.lower(): return self.string.lower() return text @deprecation("2.0.0", alternative=StringEquals) class StringOrNotString(StringEquals): pass class ExtractMtBenchRatingJudgment(FieldOperator): def process_value(self, text: Any) -> Any: match = re.search(r"\[\[([\d]+\.?[\d]*)\]\]", text) try: return float(match.group(1)) / 10 except: return 0.0 class ExtractMtBenchLabelJudgment(FieldOperator): def process_value(self, text: Any) -> Any: match = re.search(r"\[\[([^\]]+)\]\]", text) try: return str(match.group(1)) except: return "None" class LiteralEval(FieldOperator): def process_value(self, text: Any) -> Any: if text is not None and not isinstance(text, str): raise ValueError( f"LiteralEval: field '{self.field}' is expected to be of 'str' input type, got: {type(text)}" ) if text is None or text == "": return text return ast.literal_eval(text.strip()) class ExtractSafeUnsafeJudgment(FieldOperator): def process_value(self, text: Any) -> Any: first_line = str(text).strip().split("\n")[0].lower() if first_line == "safe": return 1.0 return 0.0 class ExtractArenaHardNumericalJudgment(FieldOperator): def process_value(self, text: Any) -> Any: match = re.search(r"\[\[([^\]]+)\]\]", text) try: res = str(match.group(1)) if res == "A>B": return 1 if res == "A>>B": return 3 if res == "B>A": return -1 if res == "B>>A": return -3 return 0 except: return 0 class InferDictsToBinaryLogprobs(FieldOperator): neg_class_name: str pos_class_name: str take_logprobs_from_end: bool = False num_logprobs_to_take: int = 3 min_probability_mass = 0.0001 def verify(self): super().verify() if ( self.neg_class_name.lower() in self.pos_class_name.lower() or self.pos_class_name.lower() in self.neg_class_name.lower() ): raise ValueError( f"""Class names in {self.__class__.__name__} should not overlap, got "{self.pos_class_name}" and "{self.neg_class_name}""" ) def process_value(self, obj: Any) -> Any: for i in self.get_token_range(obj): try: pos_probs, neg_probs = self.get_pos_neg_probs(pred_dict=obj[i]) if pos_probs or neg_probs: sum_probs = sum(pos_probs) + sum(neg_probs) if sum_probs > self.min_probability_mass: return sum(pos_probs) / sum_probs except: pass return 0 def get_pos_neg_probs(self, pred_dict): token_logprobs = pred_dict["top_tokens"] pos_and_neg_probs = [] for class_name in [self.pos_class_name, self.neg_class_name]: # We need to capture different variants of model behavior and tokenizers, for example with opening space, # punctuation etc. but avoid longer words that contain the class name. # For example, for class "yes" we would capture "YES," and " Yes" but not "yesterday". name_regex = re.compile( rf"(\W|Ġ|_)*{class_name}(\W|Ġ|_)*", flags=re.IGNORECASE ) class_probs = [ np.exp(d["logprob"]) for d in token_logprobs if name_regex.fullmatch(d["text"]) ] pos_and_neg_probs.append(class_probs) return pos_and_neg_probs def get_token_range(self, obj: Any) -> range: n_tokens = min([self.num_logprobs_to_take, len(obj)]) if self.take_logprobs_from_end: return range(-1, -(n_tokens + 1), -1) return range(n_tokens) class RemoveArticles(FieldOperator): def process_value(self, text: Any) -> Any: return re.sub(r"\b(a|an|the)\b", " ", text) class RemovePunctuations(FieldOperator): def process_value(self, text: Any) -> Any: puncs_to_exclude = set(string.punctuation) return "".join(c for c in text if c not in puncs_to_exclude) class FixWhiteSpace(FieldOperator): def process_value(self, text: Any) -> Any: return " ".join(text.split()) class ScaleNumberToZeroOneReturnZeroIfFails(FieldOperator): max_val = 10 min_val = 0 def process_value(self, text: Any) -> Any: try: text = float(text) return (text - self.min_val) / self.max_val except Exception: return 0 class ExtractVerbalJudgment(FieldOperator): classes = ["not", "somewhat", "mostly", "completely"] def process_value(self, text: Any) -> Any: max_val = len(self.classes) - 1 for i, c in enumerate(self.classes): if text.strip().lower().startswith(c): return i / (max_val) return 0 class ExtractVerbalJudgementBadGood(ExtractVerbalJudgment): classes = ["very bad", "bad", "mediocre", "good", "very good"]