from typing import Dict from .llm_as_judge_constants import ( EVALUATORS_METADATA, MODEL_RENAMINGS, EvaluatorMetadata, EvaluatorNameEnum, ModelProviderEnum, ) def get_parsed_context(context: Dict[str, str]): return ( "\n".join([f"{key}: {value}" for key, value in context.items()]) if len(context) > 1 or not (len(context) == 1 and next(iter(context.keys())).lower() == "context") else context[next(iter(context.keys()))] ) def get_evaluator_metadata( name: EvaluatorNameEnum ) -> EvaluatorMetadata: # , evaluator_type: EvaluatorTypeEnum) -> EvaluatorMetadata: evaluator_search = [ e for e in EVALUATORS_METADATA if e.name == name ] # and e.evaluator_type == evaluator_type] if len(evaluator_search) == 0: # raise ValueError(f'A {evaluator_type} evaluator with id {name} does not exist.') raise ValueError(f"An evaluator with id {name} does not exist.") if len(evaluator_search) > 1: # raise ValueError(f'A {evaluator_type} evaluator with id {name} matched several models.') raise ValueError(f"An evaluator with id {name} matched several models.") return evaluator_search[0] def rename_model_if_required(model_name: str, provider: ModelProviderEnum) -> str: if provider in MODEL_RENAMINGS and model_name in MODEL_RENAMINGS[provider]: return MODEL_RENAMINGS[provider][model_name] return model_name def rank_indexes(numbers): # Generate the initial list of indices indices = list(range(len(numbers))) # Sort the indices based on the corresponding values in numbers (descending order) sorted_indices = sorted(indices, key=lambda x: -numbers[x]) # Initialize a list to hold the rankings rankings = [0] * len(numbers) # Assign rankings current_rank = 0 for i in range(len(sorted_indices)): if i > 0 and numbers[sorted_indices[i]] != numbers[sorted_indices[i - 1]]: current_rank = i rankings[sorted_indices[i]] = current_rank return rankings