import difflib import inspect import json import os import pkgutil import re import warnings from abc import abstractmethod from typing import Any, Dict, List, Optional, Tuple, Union, final from .dataclass import ( AbstractField, Dataclass, Field, InternalField, NonPositionalField, fields, ) from .error_utils import Documentation, UnitxtError, UnitxtWarning from .logging_utils import get_logger from .parsing_utils import ( separate_inside_and_outside_square_brackets, ) from .settings_utils import get_constants, get_settings from .text_utils import camel_to_snake_case, is_camel_case from .type_utils import isoftype, issubtype from .utils import ( artifacts_json_cache, json_dump, save_to_file, shallow_copy, ) logger = get_logger() settings = get_settings() constants = get_constants() def is_name_legal_for_catalog(name): return re.match(r"^[\w" + constants.catalog_hierarchy_sep + "]+$", name) def verify_legal_catalog_name(name): assert is_name_legal_for_catalog( name ), f'Artifict name ("{name}") should be alphanumeric. Use "." for nesting (e.g. myfolder.my_artifact)' def dict_diff_string(dict1, dict2, max_diff=200): keys_in_both = dict1.keys() & dict2.keys() added = {k: dict2[k] for k in dict2.keys() - dict1.keys()} removed = {k: dict1[k] for k in dict1.keys() - dict2.keys()} changed = {} for k in keys_in_both: if str(dict1[k]) != str(dict2[k]): changed[k] = (dict1[k], dict2[k]) result = [] def format_with_value(k, value, label): value_str = str(value) return ( f" - {k} ({label}): {value_str}" if len(value_str) <= max_diff else f" - {k} ({label})" ) result.extend(format_with_value(k, added[k], "added") for k in added) result.extend(format_with_value(k, removed[k], "removed") for k in removed) result.extend( f" - {k} (changed): {dict1[k]!s} -> {dict2[k]!s}" if len(str(dict1[k])) <= max_diff and len(str(dict2[k])) <= 200 else f" - {k} (changed)" for k in changed ) return "\n".join(result) class Catalogs: def __new__(cls): if not hasattr(cls, "instance"): cls.instance = super().__new__(cls) cls.instance.catalogs = [] return cls.instance def __iter__(self): self._index = 0 # Initialize/reset the index for iteration return self def __next__(self): while self._index < len(self.catalogs): catalog = self.catalogs[self._index] self._index += 1 if ( settings.use_only_local_catalogs and not catalog.is_local ): # Corrected typo from 'is_loacl' to 'is_local' continue return catalog raise StopIteration def register(self, catalog): assert isinstance( catalog, AbstractCatalog ), "catalog must be an instance of AbstractCatalog" assert hasattr(catalog, "__contains__"), "catalog must have __contains__ method" assert hasattr(catalog, "__getitem__"), "catalog must have __getitem__ method" self.catalogs = [catalog, *self.catalogs] def unregister(self, catalog): assert isinstance( catalog, AbstractCatalog ), "catalog must be an instance of Catalog" assert hasattr(catalog, "__contains__"), "catalog must have __contains__ method" assert hasattr(catalog, "__getitem__"), "catalog must have __getitem__ method" self.catalogs.remove(catalog) def reset(self): self.catalogs = [] def maybe_recover_artifacts_structure(obj): if Artifact.is_possible_identifier(obj): return verbosed_fetch_artifact(obj) if isinstance(obj, dict): for key, value in obj.items(): obj[key] = maybe_recover_artifact(value) return obj if isinstance(obj, list): for i in range(len(obj)): obj[i] = maybe_recover_artifact(obj[i]) return obj return obj def get_closest_artifact_type(type): artifact_type_options = list(Artifact._class_register.keys()) matches = difflib.get_close_matches(type, artifact_type_options) if matches: return matches[0] # Return the closest match return None class UnrecognizedArtifactTypeError(ValueError): def __init__(self, type) -> None: maybe_class = "".join(word.capitalize() for word in type.split("_")) message = f"'{type}' is not a recognized artifact 'type'. Make sure a the class defined this type (Probably called '{maybe_class}' or similar) is defined and/or imported anywhere in the code executed." closest_artifact_type = get_closest_artifact_type(type) if closest_artifact_type is not None: message += "\n\n" f"Did you mean '{closest_artifact_type}'?" super().__init__(message) class MissingArtifactTypeError(ValueError): def __init__(self, dic) -> None: message = ( f"Missing '__type__' parameter. Expected 'type' in artifact dict, got {dic}" ) super().__init__(message) class Artifact(Dataclass): _class_register = {} __type__: str = Field(default=None, final=True, init=False) __title__: str = NonPositionalField( default=None, required=False, also_positional=False ) __description__: str = NonPositionalField( default=None, required=False, also_positional=False ) __tags__: Dict[str, str] = NonPositionalField( default_factory=dict, required=False, also_positional=False ) __id__: str = InternalField(default=None, required=False, also_positional=False) # if not None, the artifact is deprecated, and once instantiated, that msg # is logged as a warning __deprecated_msg__: str = NonPositionalField( default=None, required=False, also_positional=False ) data_classification_policy: List[str] = NonPositionalField( default=None, required=False, also_positional=False ) @classmethod def is_artifact_dict(cls, obj): return isinstance(obj, dict) and "__type__" in obj @classmethod def is_possible_identifier(cls, obj): return isinstance(obj, str) or cls.is_artifact_dict(obj) @classmethod def verify_artifact_dict(cls, d): if not isinstance(d, dict): raise ValueError( f"Artifact dict <{d}> must be of type 'dict', got '{type(d)}'." ) if "__type__" not in d: raise MissingArtifactTypeError(d) if not cls.is_registered_type(d["__type__"]): raise UnrecognizedArtifactTypeError(d["__type__"]) @classmethod def get_artifact_type(cls): return camel_to_snake_case(cls.__name__) @classmethod def register_class(cls, artifact_class): assert issubclass( artifact_class, Artifact ), f"Artifact class must be a subclass of Artifact, got '{artifact_class}'" assert is_camel_case( artifact_class.__name__ ), f"Artifact class name must be legal camel case, got '{artifact_class.__name__}'" snake_case_key = camel_to_snake_case(artifact_class.__name__) if cls.is_registered_type(snake_case_key): assert ( str(cls._class_register[snake_case_key]) == str(artifact_class) ), f"Artifact class name must be unique, '{snake_case_key}' already exists for {cls._class_register[snake_case_key]}. Cannot be overridden by {artifact_class}." return snake_case_key cls._class_register[snake_case_key] = artifact_class return snake_case_key def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) cls.register_class(cls) @classmethod def is_artifact_file(cls, path): if not os.path.exists(path) or not os.path.isfile(path): return False with open(path) as f: d = json.load(f) return cls.is_artifact_dict(d) @classmethod def is_registered_type(cls, type: str): return type in cls._class_register @classmethod def is_registered_class_name(cls, class_name: str): snake_case_key = camel_to_snake_case(class_name) return cls.is_registered_type(snake_case_key) @classmethod def is_registered_class(cls, clz: object): return clz in set(cls._class_register.values()) @classmethod def _recursive_load(cls, obj): if isinstance(obj, dict): new_d = {} for key, value in obj.items(): new_d[key] = cls._recursive_load(value) obj = new_d elif isinstance(obj, list): obj = [cls._recursive_load(value) for value in obj] else: pass if cls.is_artifact_dict(obj): cls.verify_artifact_dict(obj) artifact_class = cls._class_register[obj.pop("__type__")] obj = artifact_class.process_data_after_load(obj) return artifact_class(**obj) return obj @classmethod def from_dict(cls, d, overwrite_args=None): if overwrite_args is not None: d = {**d, **overwrite_args} cls.verify_artifact_dict(d) return cls._recursive_load(d) @classmethod def load(cls, path, artifact_identifier=None, overwrite_args=None): d = artifacts_json_cache(path) if "__type__" in d and d["__type__"] == "artifact_link": cls.from_dict(d) # for verifications and warnings catalog, artifact_rep, _ = get_catalog_name_and_args(name=d["to"]) return catalog.get_with_overwrite( artifact_rep, overwrite_args=overwrite_args ) new_artifact = cls.from_dict(d, overwrite_args=overwrite_args) new_artifact.__id__ = artifact_identifier return new_artifact def get_pretty_print_name(self): if self.__id__ is not None: return self.__id__ return self.__class__.__name__ def prepare(self): if self.__deprecated_msg__: warnings.warn(self.__deprecated_msg__, DeprecationWarning, stacklevel=2) def prepare_args(self): pass def verify(self): pass @final def __pre_init__(self, **kwargs): self._init_dict = get_raw(kwargs) @final def verify_data_classification_policy(self): if self.data_classification_policy is not None: if not isinstance(self.data_classification_policy, list) or not all( isinstance(data_classification, str) for data_classification in self.data_classification_policy ): raise ValueError( f"The 'data_classification_policy' of {self.get_pretty_print_name()} " f"must be either None - in case when no policy applies - or a list of " f"strings, for example: ['public']. However, '{self.data_classification_policy}' " f"of type {type(self.data_classification_policy)} was provided instead." ) @final def __post_init__(self): self.__type__ = self.register_class(self.__class__) for field in fields(self): if issubtype( field.type, Union[Artifact, List[Artifact], Dict[str, Artifact]] ): value = getattr(self, field.name) value = maybe_recover_artifacts_structure(value) setattr(self, field.name, value) self.verify_data_classification_policy() self.prepare_args() if not settings.skip_artifacts_prepare_and_verify: self.prepare() self.verify() def _to_raw_dict(self): return { "__type__": self.__type__, **self.process_data_before_dump(self._init_dict), } def __deepcopy__(self, memo): if id(self) in memo: return memo[id(self)] new_obj = Artifact.from_dict(self.to_dict()) memo[id(self)] = new_obj return new_obj def process_data_before_dump(self, data): return data @classmethod def process_data_after_load(cls, data): return data def to_json(self): data = self.to_dict() return json_dump(data) def serialize(self): if self.__id__ is not None: return self.__id__ return self.to_json() def save(self, path): original_args = Artifact.from_dict(self.to_dict()).get_repr_dict() current_args = self.get_repr_dict() diffs = dict_diff_string(original_args, current_args) if diffs: raise UnitxtError( f"Cannot save catalog artifacts that have changed since initialization. Detected differences in the following fields:\n{diffs}" ) save_to_file(path, self.to_json()) def verify_instance( self, instance: Dict[str, Any], name: Optional[str] = None ) -> Dict[str, Any]: """Checks if data classifications of an artifact and instance are compatible. Raises an error if an artifact's data classification policy does not include that of processed data. The purpose is to ensure that any sensitive data is handled in a proper way (for example when sending it to some external services). Args: instance (Dict[str, Any]): data which should contain its allowed data classification policies under key 'data_classification_policy'. name (Optional[str]): name of artifact which should be used to retrieve data classification from env. If not specified, then either ``__id__`` or ``__class__.__name__``, are used instead, respectively. Returns: Dict[str, Any]: unchanged instance. :Examples: .. code-block:: python instance = {"x": "some_text", "data_classification_policy": ["pii"]} # Will raise an error as "pii" is not included policy metric = Accuracy(data_classification_policy=["public"]) metric.verify_instance(instance) # Will not raise an error template = SpanLabelingTemplate(data_classification_policy=["pii", "propriety"]) template.verify_instance(instance) # Will not raise an error since the policy was specified in environment variable: UNITXT_DATA_CLASSIFICATION_POLICY = json.dumps({"metrics.accuracy": ["pii"]}) metric = fetch_artifact("metrics.accuracy") metric.verify_instance(instance) """ name = name or self.get_pretty_print_name() data_classification_policy = get_artifacts_data_classification(name) if not data_classification_policy: data_classification_policy = self.data_classification_policy if not data_classification_policy: return instance if not isoftype(instance, Dict[str, Any]): raise ValueError( f"The instance passed to inference engine is not a dictionary. Instance:\n{instance}" ) instance_data_classification = instance.get("data_classification_policy") if not instance_data_classification: UnitxtWarning( f"The data does not provide information if it can be used by " f"'{name}' with the following data classification policy " f"'{data_classification_policy}'. This may lead to sending of undesired " f"data to external service. Set the 'data_classification_policy' " f"of the data to ensure a proper handling of sensitive information.", Documentation.DATA_CLASSIFICATION_POLICY, ) return instance if not any( data_classification in data_classification_policy for data_classification in instance_data_classification ): raise UnitxtError( f"The instance '{instance} 'has the following data classification policy " f"'{instance_data_classification}', however, the artifact '{name}' " f"is only configured to support the data with classification " f"'{data_classification_policy}'. To enable this either change " f"the 'data_classification_policy' attribute of the artifact, " f"or modify the environment variable " f"'UNITXT_DATA_CLASSIFICATION_POLICY' accordingly.", Documentation.DATA_CLASSIFICATION_POLICY, ) return instance def __repr__(self): if self.__id__ is not None: return self.__id__ return super().__repr__() class ArtifactLink(Artifact): to: Artifact def verify(self): if self.to.__id__ is None: raise UnitxtError("ArtifactLink must link to existing catalog entry.") def get_raw(obj): if isinstance(obj, Artifact): if obj.__id__ is not None: return obj.__id__ return obj._to_raw_dict() if isinstance(obj, tuple) and hasattr(obj, "_fields"): # named tuple return type(obj)(*[get_raw(v) for v in obj]) if isinstance(obj, (list, tuple)): return type(obj)([get_raw(v) for v in obj]) if isinstance(obj, dict): return type(obj)({get_raw(k): get_raw(v) for k, v in obj.items()}) return shallow_copy(obj) class ArtifactList(list, Artifact): def prepare(self): for artifact in self: artifact.prepare() class AbstractCatalog(Artifact): is_local: bool = AbstractField() @abstractmethod def __contains__(self, name: str) -> bool: pass @abstractmethod def __getitem__(self, name) -> Artifact: pass @abstractmethod def get_with_overwrite(self, name, overwrite_args) -> Artifact: pass class UnitxtArtifactNotFoundError(UnitxtError): def __init__(self, name, catalogs): self.name = name self.catalogs = catalogs msg = ( f"Artifact {self.name} does not exist, in Unitxt catalogs: {self.catalogs}." ) if settings.use_only_local_catalogs: msg += f"\nNotice that unitxt.settings.use_only_local_catalogs is set to True, if you want to use remote catalogs set this settings or the environment variable {settings.use_only_local_catalogs_key}." super().__init__(msg) def fetch_artifact(artifact_rep) -> Tuple[Artifact, Union[AbstractCatalog, None]]: """Loads an artifict from one of possible representations. (1) If artifact representation is already an Artifact object, return it. (2) If artifact representation is a string location of a local file, load the Artifact from the local file. (3) If artifact representation is a string name in the catalog, load the Artifact from the catalog. (4) If artifact representation is a json string, create a dictionary representation from the string and build an Artifact object from it. (5) Otherwise, check that the artifact representation is a dictionary and build an Artifact object from it. """ if isinstance(artifact_rep, Artifact): if isinstance(artifact_rep, ArtifactLink): return fetch_artifact(artifact_rep.to) return artifact_rep, None # If local file if isinstance(artifact_rep, str) and Artifact.is_artifact_file(artifact_rep): artifact_to_return = Artifact.load(artifact_rep) return artifact_to_return, None # if artifact is a name of a catalog entry if isinstance(artifact_rep, str): name, _ = separate_inside_and_outside_square_brackets(artifact_rep) if is_name_legal_for_catalog(name): catalog, artifact_rep, args = get_catalog_name_and_args(name=artifact_rep) artifact_to_return = catalog.get_with_overwrite( artifact_rep, overwrite_args=args ) return artifact_to_return, catalog # If Json string, first load into dictionary if isinstance(artifact_rep, str): artifact_rep = json.loads(artifact_rep) # Load from dictionary (fails if not valid dictionary) return Artifact.from_dict(artifact_rep), None def get_catalog_name_and_args( name: str, catalogs: Optional[List[AbstractCatalog]] = None ): name, args = separate_inside_and_outside_square_brackets(name) if catalogs is None: catalogs = list(Catalogs()) for catalog in catalogs: if name in catalog: return catalog, name, args raise UnitxtArtifactNotFoundError(name, catalogs) def verbosed_fetch_artifact(identifier): artifact, catalog = fetch_artifact(identifier) logger.debug(f"Artifact {identifier} is fetched from {catalog}") return artifact def reset_artifacts_json_cache(): artifacts_json_cache.cache_clear() def maybe_recover_artifact(obj): if Artifact.is_possible_identifier(obj): return verbosed_fetch_artifact(obj) return obj def register_all_artifacts(path): for loader, module_name, _is_pkg in pkgutil.walk_packages(path): logger.info(__name__) if module_name == __name__: continue logger.info(f"Loading {module_name}") # Import the module module = loader.find_module(module_name).load_module(module_name) # Iterate over every object in the module for _name, obj in inspect.getmembers(module): # Make sure the object is a class if inspect.isclass(obj): # Make sure the class is a subclass of Artifact (but not Artifact itself) if issubclass(obj, Artifact) and obj is not Artifact: logger.info(obj) def get_artifacts_data_classification(artifact: str) -> Optional[List[str]]: """Loads given artifact's data classification policy from an environment variable. Args: artifact (str): Name of the artifact which the data classification policy should be retrieved for. For example "metrics.accuracy". Returns: Optional[List[str]] - Data classification policies for the specified artifact if they were found, or None otherwise. """ data_classification = settings.data_classification_policy if data_classification is None: return None error_msg = ( f"If specified, the value of 'UNITXT_DATA_CLASSIFICATION_POLICY' " f"should be a valid json dictionary. Got '{data_classification}' " f"instead." ) try: data_classification = json.loads(data_classification) except json.decoder.JSONDecodeError as e: raise RuntimeError(error_msg) from e if not isinstance(data_classification, dict): raise RuntimeError(error_msg) for artifact_name, artifact_data_classifications in data_classification.items(): if ( not isinstance(artifact_name, str) or not isinstance(artifact_data_classifications, list) or not all( isinstance(artifact_data_classification, str) for artifact_data_classification in artifact_data_classifications ) ): raise UnitxtError( "'UNITXT_DATA_CLASSIFICATION_POLICY' should be of type " "'Dict[str, List[str]]', where a artifact's name is a key, and a " "value is a list of data classifications used by that artifact.", Documentation.DATA_CLASSIFICATION_POLICY, ) if artifact not in data_classification.keys(): return None return data_classification.get(artifact)