import json from functools import lru_cache from typing import Any, Dict, List, Optional, Union from datasets import Dataset, DatasetDict, IterableDataset, IterableDatasetDict from .artifact import fetch_artifact from .dataset_utils import get_dataset_artifact from .inference import InferenceEngine, LogProbInferenceEngine from .logging_utils import get_logger from .metric_utils import _compute, _inference_post_process from .operator import SourceOperator from .schema import UNITXT_DATASET_SCHEMA, loads_instance from .settings_utils import get_constants, get_settings from .standard import StandardRecipe logger = get_logger() constants = get_constants() settings = get_settings() def load(source: Union[SourceOperator, str]): assert isinstance( source, (SourceOperator, str) ), "source must be a SourceOperator or a string" if isinstance(source, str): source, _ = fetch_artifact(source) return source().to_dataset() def _get_recipe_from_query(dataset_query: str) -> StandardRecipe: dataset_query = dataset_query.replace("sys_prompt", "instruction") try: dataset_stream, _ = fetch_artifact(dataset_query) except: dataset_stream = get_dataset_artifact(dataset_query) return dataset_stream def _get_recipe_from_dict(dataset_params: Dict[str, Any]) -> StandardRecipe: recipe_attributes = list(StandardRecipe.__dict__["__fields__"].keys()) for param in dataset_params.keys(): assert param in recipe_attributes, ( f"The parameter '{param}' is not an attribute of the 'StandardRecipe' class. " f"Please check if the name is correct. The available attributes are: '{recipe_attributes}'." ) return StandardRecipe(**dataset_params) def _verify_dataset_args(dataset_query: Optional[str] = None, dataset_args=None): if dataset_query and dataset_args: raise ValueError( "Cannot provide 'dataset_query' and key-worded arguments at the same time. " "If you want to load dataset from a card in local catalog, use query only. " "Otherwise, use key-worded arguments only to specify properties of dataset." ) if dataset_query: if not isinstance(dataset_query, str): raise ValueError( f"If specified, 'dataset_query' must be a string, however, " f"'{dataset_query}' was provided instead, which is of type " f"'{type(dataset_query)}'." ) if not dataset_query and not dataset_args: raise ValueError( "Either 'dataset_query' or key-worded arguments must be provided." ) def load_recipe(dataset_query: Optional[str] = None, **kwargs) -> StandardRecipe: if isinstance(dataset_query, StandardRecipe): return dataset_query _verify_dataset_args(dataset_query, kwargs) if dataset_query: recipe = _get_recipe_from_query(dataset_query) if kwargs: recipe = _get_recipe_from_dict(kwargs) return recipe def load_dataset( dataset_query: Optional[str] = None, split: Optional[str] = None, streaming: bool = False, disable_cache: Optional[bool] = None, **kwargs, ) -> Union[DatasetDict, IterableDatasetDict, Dataset, IterableDataset]: """Loads dataset. If the 'dataset_query' argument is provided, then dataset is loaded from a card in local catalog based on parameters specified in the query. Alternatively, dataset is loaded from a provided card based on explicitly given parameters. Args: dataset_query (str, optional): A string query which specifies a dataset to load from local catalog or name of specific recipe or benchmark in the catalog. For example: ``"card=cards.wnli,template=templates.classification.multi_class.relation.default".`` streaming (bool, False): When True yields the data as Unitxt streams dictionary split (str, optional): The split of the data to load disable_cache (str, optional): Disable caching process of the data **kwargs: Arguments used to load dataset from provided card, which is not present in local catalog. Returns: DatasetDict Example: .. code-block:: python dataset = load_dataset( dataset_query="card=cards.stsb,template=templates.regression.two_texts.simple,max_train_instances=5" ) # card must be present in local catalog card = TaskCard(...) template = Template(...) loader_limit = 10 dataset = load_dataset(card=card, template=template, loader_limit=loader_limit) """ recipe = load_recipe(dataset_query, **kwargs) stream = recipe() if split is not None: stream = stream[split] if disable_cache is None: disable_cache = settings.disable_hf_datasets_cache if streaming: return stream.to_iterable_dataset( features=UNITXT_DATASET_SCHEMA, ).map(loads_instance, batched=True) return stream.to_dataset( features=UNITXT_DATASET_SCHEMA, disable_cache=disable_cache ).with_transform(loads_instance) def evaluate(predictions, data) -> List[Dict[str, Any]]: return _compute(predictions=predictions, references=data) def post_process(predictions, data) -> List[Dict[str, Any]]: return _inference_post_process(predictions=predictions, references=data) @lru_cache def _get_produce_with_cache(dataset_query: Optional[str] = None, **kwargs): return load_recipe(dataset_query, **kwargs).produce def produce( instance_or_instances, dataset_query: Optional[str] = None, **kwargs ) -> Union[Dataset, Dict[str, Any]]: is_list = isinstance(instance_or_instances, list) if not is_list: instance_or_instances = [instance_or_instances] result = _get_produce_with_cache(dataset_query, **kwargs)(instance_or_instances) if not is_list: return result[0] return Dataset.from_list(result).with_transform(loads_instance) def infer( instance_or_instances, engine: InferenceEngine, dataset_query: Optional[str] = None, return_data: bool = False, return_log_probs: bool = False, return_meta_data: bool = False, **kwargs, ): dataset = produce(instance_or_instances, dataset_query, **kwargs) engine, _ = fetch_artifact(engine) if return_log_probs: if not isinstance(engine, LogProbInferenceEngine): raise NotImplementedError( f"Error in infer: return_log_probs set to True but supplied engine " f"{engine.__class__.__name__} does not support logprobs." ) infer_outputs = engine.infer_log_probs(dataset, return_meta_data) raw_predictions = ( [output.prediction for output in infer_outputs] if return_meta_data else infer_outputs ) raw_predictions = [ json.dumps(raw_prediction) for raw_prediction in raw_predictions ] else: infer_outputs = engine.infer(dataset, return_meta_data) raw_predictions = ( [output.prediction for output in infer_outputs] if return_meta_data else infer_outputs ) predictions = post_process(raw_predictions, dataset) if return_data: if return_meta_data: infer_output_list = [ infer_output.__dict__ for infer_output in infer_outputs ] for infer_output in infer_output_list: del infer_output["prediction"] dataset = dataset.add_column("infer_meta_data", infer_output_list) dataset = dataset.add_column("prediction", predictions) return dataset.add_column("raw_prediction", raw_predictions) return predictions