import abc import os from dataclasses import field from typing import Any, Dict, List, Literal, Optional, Union from .artifact import Artifact from .operator import PackageRequirementsMixin class InferenceEngine(abc.ABC, Artifact): """Abstract base class for inference.""" @abc.abstractmethod def _infer(self, dataset): """Perform inference on the input dataset.""" pass def infer(self, dataset): """Verifies instances of a dataset and performs inference.""" [self.verify_instance(instance) for instance in dataset] return self._infer(dataset) class HFPipelineBasedInferenceEngine(InferenceEngine, PackageRequirementsMixin): model_name: str max_new_tokens: int use_fp16: bool = True _requirement = { "transformers": "Install huggingface package using 'pip install --upgrade transformers" } def prepare(self): import torch from transformers import AutoConfig, pipeline model_args: Dict[str, Any] = ( {"torch_dtype": torch.float16} if self.use_fp16 else {} ) model_args.update({"max_new_tokens": self.max_new_tokens}) device = torch.device( "mps" if torch.backends.mps.is_available() else 0 if torch.cuda.is_available() else "cpu" ) # We do this, because in some cases, using device:auto will offload some weights to the cpu # (even though the model might *just* fit to a single gpu), even if there is a gpu available, and this will # cause an error because the data is always on the gpu if torch.cuda.device_count() > 1: assert device == torch.device(0) model_args.update({"device_map": "auto"}) else: model_args.update({"device": device}) task = ( "text2text-generation" if AutoConfig.from_pretrained( self.model_name, trust_remote_code=True ).is_encoder_decoder else "text-generation" ) if task == "text-generation": model_args.update({"return_full_text": False}) self.model = pipeline( model=self.model_name, trust_remote_code=True, **model_args ) def _infer(self, dataset): outputs = [] for output in self.model([instance["source"] for instance in dataset]): if isinstance(output, list): output = output[0] outputs.append(output["generated_text"]) return outputs class MockInferenceEngine(InferenceEngine): model_name: str def prepare(self): return def _infer(self, dataset): return ["[[10]]" for instance in dataset] class IbmGenAiInferenceEngineParams(Artifact): decoding_method: Optional[Literal["greedy", "sample"]] = None max_new_tokens: Optional[int] = None min_new_tokens: Optional[int] = None random_seed: Optional[int] = None repetition_penalty: Optional[float] = None stop_sequences: Optional[List[str]] = None temperature: Optional[float] = None top_k: Optional[int] = None top_p: Optional[float] = None typical_p: Optional[float] = None class IbmGenAiInferenceEngine(InferenceEngine, PackageRequirementsMixin): label: str = "ibm_genai" model_name: str parameters: IbmGenAiInferenceEngineParams = field( default_factory=IbmGenAiInferenceEngineParams ) _requirement = { "genai": "Install ibm-genai package using 'pip install --upgrade ibm-generative-ai" } data_classification_policy = ["public", "proprietary"] def prepare(self): from genai import Client, Credentials api_key_env_var_name = "GENAI_KEY" api_key = os.environ.get(api_key_env_var_name) assert api_key is not None, ( f"Error while trying to run IbmGenAiInferenceEngine." f" Please set the environment param '{api_key_env_var_name}'." ) api_endpoint = os.environ.get("GENAI_KEY") credentials = Credentials(api_key=api_key, api_endpoint=api_endpoint) self.client = Client(credentials=credentials) def _infer(self, dataset): from genai.schema import TextGenerationParameters genai_params = TextGenerationParameters( max_new_tokens=self.parameters.max_new_tokens, min_new_tokens=self.parameters.min_new_tokens, random_seed=self.parameters.random_seed, repetition_penalty=self.parameters.repetition_penalty, stop_sequences=self.parameters.stop_sequences, temperature=self.parameters.temperature, top_p=self.parameters.top_p, top_k=self.parameters.top_k, typical_p=self.parameters.typical_p, decoding_method=self.parameters.decoding_method, ) return list( self.client.text.generation.create( model_id=self.model_name, inputs=[instance["source"] for instance in dataset], parameters=genai_params, ) ) class OpenAiInferenceEngineParams(Artifact): frequency_penalty: Optional[float] = None presence_penalty: Optional[float] = None max_tokens: Optional[int] = None seed: Optional[int] = None stop: Union[Optional[str], List[str]] = None temperature: Optional[float] = None top_p: Optional[float] = None class OpenAiInferenceEngine(InferenceEngine, PackageRequirementsMixin): label: str = "openai" model_name: str parameters: OpenAiInferenceEngineParams = field( default_factory=OpenAiInferenceEngineParams ) _requirement = { "openai": "Install openai package using 'pip install --upgrade openai" } def prepare(self): from openai import OpenAI api_key_env_var_name = "OPENAI_API_KEY" api_key = os.environ.get(api_key_env_var_name) assert api_key is not None, ( f"Error while trying to run OpenAiInferenceEngine." f" Please set the environment param '{api_key_env_var_name}'." ) self.client = OpenAI(api_key=api_key) def _infer(self, dataset): return [ self.client.chat.completions.create( messages=[ # { # "role": "system", # "content": self.system_prompt, # }, { "role": "user", "content": instance["source"], } ], model=self.model_name, frequency_penalty=self.parameters.frequency_penalty, presence_penalty=self.parameters.presence_penalty, max_tokens=self.parameters.max_tokens, seed=self.parameters.seed, stop=self.parameters.stop, temperature=self.parameters.temperature, top_p=self.parameters.top_p, ) for instance in dataset ]