Elron commited on
Commit
043ae31
·
1 Parent(s): e7b1504

Upload metrics.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. metrics.py +18 -3
metrics.py CHANGED
@@ -220,13 +220,14 @@ class HuggingfaceMetric(GlobalMetric):
220
  metric_name: str = None
221
  main_score: str = None
222
  scale: float = 1.0
 
223
 
224
  def prepare(self):
225
  super().prepare()
226
  self.metric = evaluate.load(self.metric_name)
227
 
228
  def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
229
- result = self.metric.compute(predictions=predictions, references=references)
230
  if self.scale != 1.0:
231
  for key in result:
232
  if isinstance(result[key], float):
@@ -373,7 +374,14 @@ class Rouge(HuggingfaceMetric):
373
  main_score = "rougeL"
374
  scale = 1.0
375
 
 
 
 
 
 
376
  def prepare(self):
 
 
377
  super().prepare()
378
  import nltk
379
 
@@ -381,8 +389,9 @@ class Rouge(HuggingfaceMetric):
381
  self.sent_tokenize = nltk.sent_tokenize
382
 
383
  def compute(self, references, predictions):
384
- predictions = ["\n".join(self.sent_tokenize(prediction.strip())) for prediction in predictions]
385
- references = [["\n".join(self.sent_tokenize(r.strip())) for r in reference] for reference in references]
 
386
  return super().compute(references, predictions)
387
 
388
 
@@ -429,6 +438,12 @@ class Bleu(HuggingfaceMetric):
429
  scale = 1.0
430
 
431
 
 
 
 
 
 
 
432
  class MatthewsCorrelation(HuggingfaceMetric):
433
  metric_name = "matthews_correlation"
434
  main_score = "matthews_correlation"
 
220
  metric_name: str = None
221
  main_score: str = None
222
  scale: float = 1.0
223
+ hf_compute_args: dict = {}
224
 
225
  def prepare(self):
226
  super().prepare()
227
  self.metric = evaluate.load(self.metric_name)
228
 
229
  def compute(self, references: List[List[str]], predictions: List[str]) -> dict:
230
+ result = self.metric.compute(predictions=predictions, references=references, **self.hf_compute_args)
231
  if self.scale != 1.0:
232
  for key in result:
233
  if isinstance(result[key], float):
 
374
  main_score = "rougeL"
375
  scale = 1.0
376
 
377
+ use_aggregator: bool = True
378
+ rouge_types: List[str] = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
379
+
380
+ sent_split_newline: bool = True
381
+
382
  def prepare(self):
383
+ self.hf_compute_args = {"use_aggregator": self.use_aggregator, "rouge_types": self.rouge_types}
384
+
385
  super().prepare()
386
  import nltk
387
 
 
389
  self.sent_tokenize = nltk.sent_tokenize
390
 
391
  def compute(self, references, predictions):
392
+ if self.sent_split_newline:
393
+ predictions = ["\n".join(self.sent_tokenize(prediction.strip())) for prediction in predictions]
394
+ references = [["\n".join(self.sent_tokenize(r.strip())) for r in reference] for reference in references]
395
  return super().compute(references, predictions)
396
 
397
 
 
438
  scale = 1.0
439
 
440
 
441
+ class SacreBleu(HuggingfaceMetric):
442
+ metric_name = "sacrebleu"
443
+ main_score = "score"
444
+ scale = 1.0
445
+
446
+
447
  class MatthewsCorrelation(HuggingfaceMetric):
448
  metric_name = "matthews_correlation"
449
  main_score = "matthews_correlation"