metric / task.py
Elron's picture
Upload folder using huggingface_hub
058c80a verified
raw
history blame
6.92 kB
from functools import lru_cache
from typing import Any, Dict, List, Optional, Union
from .artifact import fetch_artifact
from .logging_utils import get_logger
from .operator import InstanceOperator
from .type_utils import (
get_args,
get_origin,
isoftype,
parse_type_string,
verify_required_schema,
)
class Task(InstanceOperator):
"""Task packs the different instance fields into dictionaries by their roles in the task.
Attributes:
inputs (Union[Dict[str, str], List[str]]):
Dictionary with string names of instance input fields and types of respective values.
In case a list is passed, each type will be assumed to be Any.
outputs (Union[Dict[str, str], List[str]]):
Dictionary with string names of instance output fields and types of respective values.
In case a list is passed, each type will be assumed to be Any.
metrics (List[str]): List of names of metrics to be used in the task.
prediction_type (Optional[str]):
Need to be consistent with all used metrics. Defaults to None, which means that it will
be set to Any.
defaults (Optional[Dict[str, Any]]):
An optional dictionary with default values for chosen input/output keys. Needs to be
consistent with names and types provided in 'inputs' and/or 'outputs' arguments.
Will not overwrite values if already provided in a given instance.
The output instance contains three fields:
"inputs" whose value is a sub-dictionary of the input instance, consisting of all the fields listed in Arg 'inputs'.
"outputs" -- for the fields listed in Arg "outputs".
"metrics" -- to contain the value of Arg 'metrics'
"""
inputs: Union[Dict[str, str], List[str]]
outputs: Union[Dict[str, str], List[str]]
metrics: List[str]
prediction_type: Optional[str] = None
augmentable_inputs: List[str] = []
defaults: Optional[Dict[str, Any]] = None
def verify(self):
for io_type in ["inputs", "outputs"]:
data = self.inputs if io_type == "inputs" else self.outputs
if not isoftype(data, Dict[str, str]):
get_logger().warning(
f"'{io_type}' field of Task should be a dictionary of field names and their types. "
f"For example, {{'text': 'str', 'classes': 'List[str]'}}. Instead only '{data}' was "
f"passed. All types will be assumed to be 'Any'. In future version of unitxt this "
f"will raise an exception."
)
data = {key: "Any" for key in data}
if io_type == "inputs":
self.inputs = data
else:
self.outputs = data
if not self.prediction_type:
get_logger().warning(
"'prediction_type' was not set in Task. It is used to check the output of "
"template post processors is compatible with the expected input of the metrics. "
"Setting `prediction_type` to 'Any' (no checking is done). In future version "
"of unitxt this will raise an exception."
)
self.prediction_type = "Any"
self.check_metrics_type()
for augmentable_input in self.augmentable_inputs:
assert (
augmentable_input in self.inputs
), f"augmentable_input {augmentable_input} is not part of {self.inputs}"
self.verify_defaults()
@staticmethod
@lru_cache(maxsize=None)
def get_metric_prediction_type(metric_id: str):
metric = fetch_artifact(metric_id)[0]
return metric.get_prediction_type()
def check_metrics_type(self) -> None:
prediction_type = parse_type_string(self.prediction_type)
for metric_id in self.metrics:
metric_prediction_type = Task.get_metric_prediction_type(metric_id)
if (
prediction_type == metric_prediction_type
or prediction_type == Any
or metric_prediction_type == Any
or (
get_origin(metric_prediction_type) is Union
and prediction_type in get_args(metric_prediction_type)
)
):
continue
raise ValueError(
f"The task's prediction type ({prediction_type}) and '{metric_id}' "
f"metric's prediction type ({metric_prediction_type}) are different."
)
def verify_defaults(self):
if self.defaults:
if not isinstance(self.defaults, dict):
raise ValueError(
f"If specified, the 'defaults' must be a dictionary, "
f"however, '{self.defaults}' was provided instead, "
f"which is of type '{type(self.defaults)}'."
)
for default_name, default_value in self.defaults.items():
assert isinstance(default_name, str), (
f"If specified, all keys of the 'defaults' must be strings, "
f"however, the key '{default_name}' is of type '{type(default_name)}'."
)
val_type = self.inputs.get(default_name) or self.outputs.get(
default_name
)
assert val_type, (
f"If specified, all keys of the 'defaults' must refer to a chosen "
f"key in either 'inputs' or 'outputs'. However, the name '{default_name}' "
f"was provided which does not match any of the keys."
)
assert isoftype(default_value, parse_type_string(val_type)), (
f"The value of '{default_name}' from the 'defaults' must be of "
f"type '{val_type}', however, it is of type '{type(default_value)}'."
)
def set_default_values(self, instance: Dict[str, Any]) -> Dict[str, Any]:
if self.defaults:
instance = {**self.defaults, **instance}
return instance
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
instance = self.set_default_values(instance)
verify_required_schema(self.inputs, instance)
verify_required_schema(self.outputs, instance)
inputs = {key: instance[key] for key in self.inputs.keys()}
outputs = {key: instance[key] for key in self.outputs.keys()}
data_classification_policy = instance.get("data_classification_policy", [])
return {
"inputs": inputs,
"outputs": outputs,
"metrics": self.metrics,
"data_classification_policy": data_classification_policy,
}
class FormTask(Task):
pass