File size: 9,551 Bytes
b462f85
f418928
b462f85
f6ebc4f
 
b462f85
f418928
b462f85
f6ebc4f
 
f418928
 
 
 
 
 
b462f85
 
 
f6ebc4f
 
 
b462f85
 
 
f418928
b462f85
f418928
 
 
f6ebc4f
 
 
 
 
 
 
 
b462f85
f418928
b462f85
 
f6ebc4f
b462f85
 
 
 
 
 
f6ebc4f
b462f85
 
 
f6ebc4f
 
 
 
b462f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d23392
b462f85
 
 
 
 
 
f6ebc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
b462f85
 
 
 
 
f418928
f6ebc4f
 
 
 
 
 
 
 
 
f418928
 
f6ebc4f
 
f418928
 
 
f6ebc4f
 
 
 
 
 
b462f85
 
 
 
 
f6ebc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
b462f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f418928
 
 
 
 
 
b462f85
 
 
 
f6ebc4f
b462f85
 
058c80a
 
 
 
 
 
 
b462f85
058c80a
b462f85
058c80a
 
b462f85
f418928
b462f85
f6ebc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from typing import Any, Dict, List, Literal, Optional

from .api import evaluate, produce
from .artifact import Artifact, fetch_artifact, settings
from .formats import Format
from .inference import InferenceEngine, OpenAiInferenceEngine
from .metrics import BulkInstanceMetric
from .operator import SequentialOperator
from .system_prompts import SystemPrompt
from .templates import Template


class LLMAsJudge(BulkInstanceMetric):
    """LLM as judge based metric class for evaluating correctness.

    Attributes:
        main_score (str): The main score label used for evaluation.
        task (Literal["rating.single_turn"]): The type of task the llm-as-judge runs. This defines the output and input
         format of the jude model.
        template (Template): The template used when generating inputs for the judge llm.
        format (Format): The format used when generating inputs for judge llm.
        system_prompt (SystemPrompt): The system prompt used when generating inputs for judge llm.
        strip_system_prompt_and_format_from_inputs (bool): Whether to strip the system prompt and formatting from the
         inputs that the models that is being judges received, when they are inserted to the llm-as-judge prompt.
        inference_model (InferenceEngine): the module that creates the inference of the judge llm.
        reduction_map (dict): A dictionary specifying the reduction method for the metric.
        batch_size (int): The size of the bulk.
    """

    main_score: str = "llm_as_judge"
    task: Literal[
        "rating.single_turn",
        "rating.single_turn_with_reference",
        "pairwise_comparative_rating.single_turn",
    ]
    template: Template
    format: Format = None
    system_prompt: SystemPrompt = None
    strip_system_prompt_and_format_from_inputs: bool = True
    inference_model: InferenceEngine
    reduction_map: Optional[Dict[str, List[str]]] = None
    batch_size: int = 32
    prediction_type = Any  # Because handled with multiple tasks

    def _get_input_instances(self, task_data: List[Dict]) -> List:
        if self.strip_system_prompt_and_format_from_inputs:
            instances = []
            for task_data_instance in task_data:
                template = task_data_instance["metadata"]["template"]
                template, _ = fetch_artifact(template)
                instance = SequentialOperator(
                    steps=[template, "formats.empty"]
                ).process_instance(
                    {
                        "input_fields": task_data_instance,
                        "reference_fields": task_data_instance,
                    }
                )
                instances.append(instance["source"])
                """
                We also have access to: instance["target"]
                                        instance["references"]
                """
            return instances
        return [t["source"] for t in task_data]

    def _get_instance_for_judge_model(
        self, input_instances: List[str], predictions: List, references: List
    ) -> List[Dict]:
        if self.task == "rating.single_turn":
            instances = [
                {
                    "question": input_instance,
                    "answer": prediction,
                    "rating": 5.0,  # This is a dummy value that is not used in practice
                }
                for input_instance, prediction, reference in zip(
                    input_instances, predictions, references
                )
            ]
        elif self.task == "rating.single_turn_with_reference":
            instances = [
                {
                    "question": input_instance,
                    "answer": prediction,
                    "reference_answer": reference[0],
                    "rating": 5.0,  # This is a dummy value that is not used in practice
                }
                for input_instance, prediction, reference in zip(
                    input_instances, predictions, references
                )
            ]
        elif self.task == "pairwise_comparative_rating.single_turn":
            instances = [
                {
                    "question": input_instance,
                    "answer_a": prediction,
                    "answer_b": reference[0],
                    "model_a": "input_model",
                    "model_b": "baseline_model",
                    "answer_a_preference": 0,  # This is a dummy value that is not used in practice,
                }
                for input_instance, prediction, reference in zip(
                    input_instances, predictions, references
                )
            ]
        else:
            raise NotImplementedError(
                f"Error in 'LLMAsJudge' metric. {self.task} is not a supported task type."
            )
        return instances

    @staticmethod
    def _add_metadata_to_judge_instances(
        instances: List[List[Any]], task_data: List[Dict]
    ):
        for instance, data in zip(instances, task_data):
            instance["data_classification_policy"] = data["metadata"][
                "data_classification_policy"
            ]

    def prepare(self):
        super().prepare()
        if self.task == "pairwise_comparative_rating.single_turn":
            self.reduction_map = {"weighted_win_rate": [self.main_score]}
        if self.reduction_map is None:
            self.reduction_map = {"mean": [self.main_score]}

    def verify(self):
        supported_tasks = [
            "rating.single_turn",
            "rating.single_turn_with_reference",
            "pairwise_comparative_rating.single_turn",
        ]
        assert self.task in supported_tasks, (
            f"Error in 'LLMAsJudge' metric. {self.task} is not a supported task type."
            f"The supported tasks types are: {', '.join(supported_tasks)}."
        )

        if not isinstance(self.template, Template):
            raise ValueError(
                f"Provided template argument to 'LLMAsJudge' metric is not of type Template, but {type(self.template)}"
            )
        if self.format and not isinstance(self.format, Format):
            raise ValueError(
                f"Provided format argument to 'LLMAsJudge' metric is not of type Format, but {type(self.format)}"
            )

        if self.system_prompt and not isinstance(self.system_prompt, SystemPrompt):
            raise ValueError(
                f"Provided system_prompt argument to 'LLMAsJudge' metric is not of type SystemPrompt, but {type(self.system_prompt)}"
            )

        if isinstance(self.inference_model, OpenAiInferenceEngine):
            if self.format:
                raise ValueError(
                    "Error in 'LLMAsJudge' metric. Inference model 'OpenAiInferenceEngine' does "
                    "not support formatting. Please remove the format definition from the recipe"
                    " (OpenAi Chat API take care of the formatting automatically)."
                )
            if self.system_prompt:
                raise ValueError(
                    "Error in 'LLMAsJudge' metric. Inference model 'OpenAiInferenceEngine' does "
                    "not support system prompt. Please remove the system_prompt definition from the recipe"
                    " (Current implementation of Unitxt does not support this."
                    " Support will be added in future updates)."
                )

    def compute(
        self,
        references: List[List[Any]],
        predictions: List[Any],
        task_data: List[Dict],
    ) -> List[Dict[str, Any]]:
        input_instances = self._get_input_instances(task_data)
        instances = self._get_instance_for_judge_model(
            input_instances, predictions, references
        )
        self._add_metadata_to_judge_instances(instances, task_data)

        card = f"cards.dynamic_cards_for_llm_judges.{self.task}"
        recipe_args = {
            "card": card,
            "template": self.template,
            "demos_pool_size": 0,
            "num_demos": 0,
            "__type__": settings.default_recipe,
        }
        if self.system_prompt:
            recipe_args["system_prompt"] = self.system_prompt
        if self.format:
            recipe_args["format"] = self.format
        recipe = Artifact.from_dict(recipe_args)
        dataset = produce(instances, recipe)
        verdicts = self.inference_model.infer(dataset)
        meta_scores = evaluate(predictions=verdicts, data=dataset)

        res_list = []
        for instance, verdict in zip(meta_scores, verdicts):
            if self.task == "pairwise_comparative_rating.single_turn":
                is_model_b_the_baseline = (
                    instance["task_data"]["model_b"] == "baseline_model"
                )
                if is_model_b_the_baseline:
                    model_a_preference_score = instance["processed_prediction"]
                else:
                    model_a_preference_score = instance["processed_prediction"] * -1

                res = {
                    self.main_score: model_a_preference_score,
                    "judge_raw_output": verdict,
                    "judge_raw_input": instance["source"],
                }
            else:
                res = {
                    self.main_score: instance["processed_prediction"],
                    "judge_raw_output": verdict,
                    "judge_raw_input": instance["source"],
                }
            res_list.append(res)

        return res_list