File size: 3,011 Bytes
b0744ce
 
 
 
fe80c45
b0744ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe80c45
b0744ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2df9969
 
 
b0744ce
 
2df9969
b0744ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317a57f
 
 
b0744ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
import torch
from omegaconf import OmegaConf
from transformers import pipeline
import spaces

device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32


def load_pipe(model_id: str):
    return pipeline(
        "automatic-speech-recognition",
        model=model_id,
        max_new_tokens=128,
        chunk_length_s=30,
        batch_size=8,
        torch_dtype=torch_dtype,
        device=device,
    )

OmegaConf.register_new_resolver("load_pipe", load_pipe)

models_config = OmegaConf.to_object(OmegaConf.load("configs/models.yaml"))

@spaces.GPU
def automatic_speech_recognition(model_id: str, dialect_id: str, audio_file: str):
    model = models_config[model_id]["model"]
    generate_kwargs = {
        "task": "transcribe",
        "language": "id",
        "num_beams": 1,
        "prompt_ids": torch.from_numpy(model.tokenizer.get_prompt_ids(dialect_id)).to(
            device
        ),
    }
    return model(audio_file, generate_kwargs=generate_kwargs)["text"].replace(f" {dialect_id}", "")


def when_model_selected(model_id: str):
    model_config = models_config[model_id]

    dialect_drop_down_choices = [
        (k, v) for k, v in model_config["dialect_mapping"].items()
    ]

    return gr.update(
        choices=dialect_drop_down_choices,
        value=dialect_drop_down_choices[0][1],
    )

def get_title():
    with open("DEMO.md") as tong:
        return tong.readline().strip('# ')

demo = gr.Blocks(
    title=get_title(),
    css="@import url(https://tauhu.tw/tauhu-oo.css);",
    theme=gr.themes.Default(
        font=(
            "tauhu-oo",
            gr.themes.GoogleFont("Source Sans Pro"),
            "ui-sans-serif",
            "system-ui",
            "sans-serif",
        )
    ),
)

with demo:
    default_model_id = list(models_config.keys())[0]
    model_drop_down = gr.Dropdown(
        models_config.keys(),
        value=default_model_id,
        label="模型",
    )

    dialect_drop_down = gr.Radio(
        choices=[
            (k, v)
            for k, v in models_config[default_model_id]["dialect_mapping"].items()
        ],
        value=list(models_config[default_model_id]["dialect_mapping"].values())[0],
        label="族別",
    )

    model_drop_down.input(
        when_model_selected,
        inputs=[model_drop_down],
        outputs=[dialect_drop_down],
    )

    with open("DEMO.md") as tong:
        gr.Markdown(tong.read())

    gr.Interface(
        automatic_speech_recognition,
        inputs=[
            model_drop_down,
            dialect_drop_down,
            gr.Audio(
                label="上傳或錄音",
                type="filepath",
                waveform_options=gr.WaveformOptions(
                    sample_rate=16000,
                ),
            ),
        ],
        outputs=[
            gr.Text(interactive=False, label="辨識結果"),
        ],
        allow_flagging="auto",
    )

demo.launch()